Weibull++ Standard Folio Data Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
! scope="col" |
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
| align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" |
The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.
|-
| align="center" valign="middle" |
The lognormal distribution is a two-parameter distribution with parameters  <math>{\mu }'</math>  and  <math>{{\sigma }_{{{T}'}}}</math> . The  <math>pdf</math>  for this distribution is given by:
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
where, <math>{T}'=\ln (T)</math>. , where the  <math>T</math>  values are the times-to-failure, and
:<math>\mu'=\text{mean of the natural logarithms}</math>
:<math>\text{of the times-to-failure,}</math>
:<math>\sigma_{T'}=\text{standard deviation of the natural logarithms}</math>
:<math>\text{of the times-to-failure}</math>
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...]
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_2P See Examples...]
|}
<br>


=Help For=


Weibull Standard Folio


2 Parameter Weibull


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Lognormal&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Lognormal&action=edit]]

Revision as of 19:01, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis

The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.


The lognormal distribution is a two-parameter distribution with parameters [math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:

[math]\displaystyle{ f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]

where, [math]\displaystyle{ {T}'=\ln (T) }[/math]. , where the [math]\displaystyle{ T }[/math] values are the times-to-failure, and

[math]\displaystyle{ \mu'=\text{mean of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure,} }[/math]
[math]\displaystyle{ \sigma_{T'}=\text{standard deviation of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure} }[/math]


Get More Details...
See Examples...










Docedit.png