Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior.  The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:  
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior.  The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:  
|-
|-
| align="left" valign="middle" |
| align="center" valign="middle" |
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life.  Eta represents the time by which 63.2% of the units fail.<br>  
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life.  Eta represents the time by which 63.2% of the units fail.<br>  

Revision as of 17:50, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis

The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:


[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]
Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life. Eta represents the time by which 63.2% of the units fail.

[math]\displaystyle{ \beta= }[/math] shape parameter (or slope).

Get More Details...
See Examples...



Docedit.png