Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
| align="left" valign="middle" | | | align="left" valign="middle" | | ||
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | <br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | ||
<br><math> \eta= | <br><math> \eta= </math> scale parameter, or characteristic life, and <br> | ||
<br><math> \beta= | <br><math> \beta= </math> shape parameter (or slope). | ||
|- | |- | ||
| align="center" valign="middle" | More Details | | align="center" valign="middle" | More Details |
Revision as of 17:45, 11 November 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by: |
|
More Details |
Examples |