Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
}} | }} | ||
* With the one-parameter Weibull, we assume that the shape parameter is Constant and known ''a priori''. The advantage of doing this is that data sets with few or no failures can be analyzed. | |||
* Only the scale parameter (eta) is estimated from data. You will be prompted to specify the shape parameter value. | * Only the scale parameter (eta) is estimated from data. You will be prompted to specify the shape parameter value. | ||
* See [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | * See [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | ||
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] | [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] |
Revision as of 21:49, 9 November 2011
- With the one-parameter Weibull, we assume that the shape parameter is Constant and known a priori. The advantage of doing this is that data sets with few or no failures can be analyzed.
- Only the scale parameter (eta) is estimated from data. You will be prompted to specify the shape parameter value.
- See The Weibull Distribution