Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:


<math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
<math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
<br>
}}
 


With the one-parameter Weibull, we assume that the shape parameter is Constant and known ''a priori''.   
With the one-parameter Weibull, we assume that the shape parameter is Constant and known ''a priori''.   
Line 9: Line 10:


[http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
[http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
}}
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]]

Revision as of 21:45, 9 November 2011

Template:WeibullSideBar


With the one-parameter Weibull, we assume that the shape parameter is Constant and known a priori.
The advantage of doing this is that data sets with few or no failures can be analyzed.

The Weibull Distribution

Docedit.png