Template:Example: Normal General Example Suspension Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions.
Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions.


{|align="center" border=1 cellspacing=1
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5"
|-
|-
|colspan="3" style="text-align:center"| Table - Non-Grouped Data Times-to-Failure with Suspensions (Right Censored)
|colspan="3" style="text-align:center"| Non-Grouped Data Times-to-Failure with Suspensions (Right Censored)
|-  
|-  
!Data point index
!Data point index
Line 59: Line 59:
  & {{{\hat{\sigma }}}_{T}}= & 28.41.   
  & {{{\hat{\sigma }}}_{T}}= & 28.41.   
\end{align}</math>
\end{align}</math>


For rank regression on x:  
For rank regression on x:  
Line 67: Line 66:
  & {{{\hat{\sigma }}}_{T}}= & 28.64.   
  & {{{\hat{\sigma }}}_{T}}= & 28.64.   
\end{align}</math>
\end{align}</math>


For rank regression on y:  
For rank regression on y:  

Revision as of 03:08, 8 August 2012

Normal Distribution General Example Suspension Data

Nineteen units are being reliability tested and the following is a table of their times-to-failure and suspensions.

Non-Grouped Data Times-to-Failure with Suspensions (Right Censored)
Data point index Last Inspected State End Time
1 F 2
2 S 3
3 F 5
4 S 7
5 F 11
6 S 13
7 S 17
8 S 19
9 F 23
10 F 29
11 S 31
12 F 37
13 S 41
14 F 43
15 S 47
16 S 53
17 F 59
18 S 61
19 S 67

Solution

This augments the previous example by adding eleven suspensions to the data set. This data set can be entered into Weibull++ by selecting the data sheet for Times to Failure and with Right Censored Data (Suspensions). The parameters using maximum likelihood are:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 48.07 \\ & {{{\hat{\sigma }}}_{T}}= & 28.41. \end{align} }[/math]

For rank regression on x:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 46.40 \\ & {{{\hat{\sigma }}}_{T}}= & 28.64. \end{align} }[/math]

For rank regression on y:

[math]\displaystyle{ \begin{align} & \widehat{\mu }= & 47.34 \\ & {{{\hat{\sigma }}}_{T}}= & 29.96. \end{align} }[/math]