Crow Extended Confidence Bounds: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{template:RGA BOOK|E|Crow Extended Confidence Bounds}}
{{template:RGA BOOK|E|Crow Extended Confidence Bounds}}
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow Extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow Extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 
===Bounds on Demonstrated Failure Intensity===
====Fisher Matrix Bounds====
If there are no BC failure modes, the demonstrated failure intensity is  <math>{{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T}</math> . Thus:
::<math>Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T}</math>
<br>
:and:
::<math>\sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1)</math>
::<math>{{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}}</math>
where  <math>C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}</math> .
<br>
If there are BC failure modes, the demonstrated failure intensity,  <math>{{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}</math> , is actually the instantaneous failure intensity based on all of the data.  <math>{{\lambda }_{CA}}(T)</math>  must be positive, thus  <math>\ln {{\lambda }_{CA}}(T)</math>  is approximately treated as being normally distributed.
::<math>\frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1)</math>
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
::<math>CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}}</math>
where  <math>{{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}}</math> .
::<math>\begin{align}
  & Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\
&  & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) 
\end{align}</math>
The variance calculation is the same as described in Chapter 5.
<br>
====Crow Bounds====
<br>
If there are no BC failure modes then:
::<math>\begin{align}
  & {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\
& {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N} 
\end{align}</math>
where  <math>{{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}}</math> .
<br>
If there are BC modes then the confidence bounds on the demonstrated failure intensity are calculated as presented in Chapter 5.
<br>
===Bounds on Demonstrated MTBF===
====Fisher Matrix Bounds====
::<math>\begin{align}
  & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\
& MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} 
\end{align}</math>
where  <math>{{[{{\lambda }_{D}}(T)]}_{L}}</math>  and  <math>{{[{{\lambda }_{D}}(T)]}_{U}}</math>  can be obtained from Eqn. (DR).
<br>
====Crow Bounds====
::<math>\begin{align}
  & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\
& MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} 
\end{align}</math>
where  <math>{{[{{\lambda }_{D}}(T)]}_{L}}</math>  and  <math>{{[{{\lambda }_{D}}(T)]}_{U}}</math>  can be obtained from Eqn. (DCR).  
<br>
===Bounds on Projected Failure Intensity===
====Fisher Matrix Bounds====
The projected failure intensity  <math>{{\lambda }_{P}}(T)</math>  must be positive, thus  <math>\ln {{\lambda }_{P}}(T)</math>  is approximately treated as being normally distributed as well:
::<math>\frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1)</math>
::<math>CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}}</math>
<br>
<br>
{{bounds on demonstrated failure intensity rga}}
where:
<br>
:• <math>{{\hat{\lambda }}_{P}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\tfrac{M}{T}\bar{\beta }</math>  when there are no BC modes.
:• <math>{{\hat{\lambda }}_{P}}(T)={{\widehat{\lambda }}_{EM}}={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\widehat{h}(T|BD)</math>  when there are BC modes.
:• <math>{{N}_{i}}</math>  is the total failure number of the  <math>{{i}^{th}}</math>  distinct BD mode.
<br>
You can then get:


{{bounds on demonstrated mtbf rga}}
::<math>Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T))</math>


{{bounds on projected failure intensity rga}}
:where:


{{bounds on projected mtbf rga}}
::<math>\begin{align}
  & \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\
& Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta }) 
\end{align}</math>


{{bounds on growth potential failure intensity rga}}
The  <math>Var(\hat{\beta })</math>  can be obtained from Fisher Matrix based on <math>M</math>  distinct BD modes.
<br>


{{bounds on growth potential mtbf rga}}
====Crow Bounds====
::<math>\begin{align}
  & {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\
& {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}} 
\end{align}</math>
 
 
where  <math>C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}</math> .
<br>
 
 
===Bounds on Projected MTBF===
====Fisher Matrix Bounds====
::<math>\begin{align}
  & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\
& MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} 
\end{align}</math>
 
<math>{{[{{\lambda }_{P}}(T)]}_{U}}</math>  and  <math>{{[{{\lambda }_{P}}(T)]}_{L}}</math>  can be obtained from Eqn. (extended25).
<br>
====Crow Bounds====
::<math>\begin{align}
  & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\
& MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} 
\end{align}</math>
 
<math>{{[{{\lambda }_{P}}(T)]}_{U}}</math>  and  <math>{{[{{\lambda }_{P}}(T)]}_{L}}</math>  can be obtained from Eqn. (PCR).
<br>
===Bounds on Growth Potential Failure Intensity===
====Fisher Matrix Bounds====
If there are no BC failure modes, the growth potential failure intensity is  <math>{{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}</math> .
 
:Then:
 
::<math>\begin{align}
  & Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\
& \le  & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\
& = & \frac{{{r}_{GP}}}{T} 
\end{align}</math>
 
If there are BC failure modes, the growth potential failure intensity is  <math>{{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T},</math>  <math>Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T}</math> . Therefore:
 
::<math>\sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1)</math>
 
 
The confidence bounds on the growth potential failure intensity are as follows:
 
::<math>\begin{align}
  & {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\
& {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} 
\end{align}</math>
 
where  <math>C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}}</math> .
<br>
 
====Crow Bounds====
The Crow bounds for the growth potential failure intensity are the same as the Fisher Matrix bounds.  
<br>
 
 
 
 
 
 
 
===Bounds on Growth Potential MTBF===
====Fisher Matrix Bounds====
::<math>\begin{align}
  & MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\
& MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}} 
\end{align}</math>
 
where  <math>{{r}_{U}}</math>  and  <math>{{r}_{L}}</math>  can be obtained from Eqn. (GPR).
<br>
====Crow Bounds====
The Crow bounds for the growth potential MTBF are the same as the Fisher Matrix bounds.

Revision as of 05:41, 25 August 2012

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis

Chapter E: Crow Extended Confidence Bounds


RGAbox.png

Chapter E  
Crow Extended Confidence Bounds  

Synthesis-icon.png

Available Software:
RGA

Examples icon.png

More Resources:
RGA examples

In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for the Crow Extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 

Bounds on Demonstrated Failure Intensity

Fisher Matrix Bounds

If there are no BC failure modes, the demonstrated failure intensity is [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)=\tfrac{{{N}_{A}}+{{N}_{BD}}}{T} }[/math] . Thus:


[math]\displaystyle{ Var({{\hat{\lambda }}_{D}}(t))=\frac{{{N}_{A}}}{{{T}^{2}}}+\frac{{{N}_{BD}}}{{{T}^{2}}}=\frac{{{\lambda }_{D}}(t)}{T} }[/math]


and:
[math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{\lambda }}}_{D}}(T)-{{\lambda }_{D}}(T)}{\sqrt{{{\lambda }_{D}}(T)}} \right)\sim N(0,1) }[/math]


[math]\displaystyle{ {{\lambda }_{D}}(T)={{\hat{\lambda }}_{D}}(T)+\frac{{{C}^{2}}}{2}\pm \sqrt{{{{\hat{\lambda }}}_{D}}(T){{C}^{2}}+\frac{{{C}^{4}}}{4}} }[/math]

where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .
If there are BC failure modes, the demonstrated failure intensity, [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}} }[/math] , is actually the instantaneous failure intensity based on all of the data. [math]\displaystyle{ {{\lambda }_{CA}}(T) }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{CA}}(T) }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{CA}}(T)-\ln {{\lambda }_{CA}}(T)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{CA}}(T)})}\sim N(0,1) }[/math]

The approximate confidence bounds on the instantaneous failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{CA}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{CA}}(T))}/{{{\hat{\lambda }}}_{i}}(T)}} }[/math]

where [math]\displaystyle{ {{\lambda }_{CA}}(t)=\lambda \beta {{T}^{\beta -1}} }[/math] .

[math]\displaystyle{ \begin{align} & Var({{{\hat{\lambda }}}_{CA}}(T))= & {{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & & +2\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{CA}}(T)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align} }[/math]

The variance calculation is the same as described in Chapter 5.

Crow Bounds


If there are no BC failure modes then:


[math]\displaystyle{ \begin{align} & {{[{{\lambda }_{D}}(T)]}_{l}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,1-\alpha /2)}^{2}}{2N} \\ & {{[{{\lambda }_{D}}(T)]}_{u}}= & {{\widehat{\lambda }}_{D}}(T)\frac{\chi _{(2N,\alpha /2)}^{2}}{2N} \end{align} }[/math]


where [math]\displaystyle{ {{\widehat{\lambda }}_{D}}(T)={{\widehat{\lambda }}_{CA}} }[/math] .
If there are BC modes then the confidence bounds on the demonstrated failure intensity are calculated as presented in Chapter 5.


Bounds on Demonstrated MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align} }[/math]

where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}} }[/math] can be obtained from Eqn. (DR).

Crow Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{{{D}_{L}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{U}}} \\ & MTB{{F}_{{{D}_{U}}}}= & \frac{1}{{{[{{\lambda }_{D}}(T)]}_{L}}} \end{align} }[/math]

where [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{L}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{D}}(T)]}_{U}} }[/math] can be obtained from Eqn. (DCR).  

Bounds on Projected Failure Intensity

Fisher Matrix Bounds

The projected failure intensity [math]\displaystyle{ {{\lambda }_{P}}(T) }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{P}}(T) }[/math] is approximately treated as being normally distributed as well:

[math]\displaystyle{ \frac{\ln {{{\hat{\lambda }}}_{P}}(T)-\ln {{\lambda }_{P}}(t)}{\sqrt{Var(\ln {{{\hat{\lambda }}}_{P}}(T)})}\sim N(0,1) }[/math]


[math]\displaystyle{ CB={{\hat{\lambda }}_{P}}(T){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{{\hat{\lambda }}}_{P}}(T))}/{{{\hat{\lambda }}}_{P}}(T)}} }[/math]


where:

[math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\tfrac{M}{T}\bar{\beta } }[/math] when there are no BC modes.
[math]\displaystyle{ {{\hat{\lambda }}_{P}}(T)={{\widehat{\lambda }}_{EM}}={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}+\overline{d}\widehat{h}(T|BD) }[/math] when there are BC modes.
[math]\displaystyle{ {{N}_{i}} }[/math] is the total failure number of the [math]\displaystyle{ {{i}^{th}} }[/math] distinct BD mode.


You can then get:

[math]\displaystyle{ Var({{\lambda }_{P}}(T))\approx Var({{\hat{\gamma }}_{GP}})+\mu _{d}^{2}Var(h(T))\approx \frac{{{{\hat{r}}}_{GP}}}{T}+\mu _{d}^{2}Var(h(T)) }[/math]
where:
[math]\displaystyle{ \begin{align} & \hat{h}(T)= & \frac{M}{T}\bar{\beta } \\ & Var(\hat{h}(T))= & {{(\frac{M}{T})}^{2}}Var(\bar{\beta })={{(\frac{M}{T})}^{2}}{{(\frac{M}{M-1})}^{2}}Var(\hat{\beta })=\frac{{{M}^{4}}}{{{T}^{2}}{{(M-1)}^{2}}}Var(\hat{\beta }) \end{align} }[/math]

The [math]\displaystyle{ Var(\hat{\beta }) }[/math] can be obtained from Fisher Matrix based on [math]\displaystyle{ M }[/math] distinct BD modes.

Crow Bounds

[math]\displaystyle{ \begin{align} & {{[{{\lambda }_{P}}(T)]}_{L}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot {{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ & {{[{{\lambda }_{P}}(T)]}_{U}}= & {{{\hat{\lambda }}}_{P}}(T)+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{\lambda }}}_{P}}(T)\cdot \ \,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align} }[/math]


where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .


Bounds on Projected MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ & MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align} }[/math]

[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}} }[/math] can be obtained from Eqn. (extended25).

Crow Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{{{P}_{L}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{U}}} \\ & MTB{{F}_{{{P}_{U}}}}= & \frac{1}{{{[{{\lambda }_{P}}(T)]}_{L}}} \end{align} }[/math]

[math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{U}} }[/math] and [math]\displaystyle{ {{[{{\lambda }_{P}}(T)]}_{L}} }[/math] can be obtained from Eqn. (PCR).

Bounds on Growth Potential Failure Intensity

Fisher Matrix Bounds

If there are no BC failure modes, the growth potential failure intensity is [math]\displaystyle{ {{\widehat{r}}_{GP}}(T)=\tfrac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T} }[/math] .

Then:
[math]\displaystyle{ \begin{align} & Var({{\widehat{r}}_{GP}})= & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,{{(1-{{d}_{i}})}^{2}}\frac{{{N}_{i}}}{T} \right] \\ & \le & \frac{1}{T}\left[ \frac{{{N}_{A}}}{T}+\underset{i=1}{\overset{M}{\mathop \sum }}\,(1-{{d}_{i}})\frac{{{N}_{i}}}{T} \right] \\ & = & \frac{{{r}_{GP}}}{T} \end{align} }[/math]

If there are BC failure modes, the growth potential failure intensity is [math]\displaystyle{ {{\widehat{r}}_{GP}}(T)={{\widehat{\lambda }}_{CA}}-{{\widehat{\lambda }}_{BD}}+\underset{i=1}{\overset{M}{\mathop{\sum }}}\,(1-{{d}_{i}})\tfrac{{{N}_{i}}}{T}, }[/math] [math]\displaystyle{ Var({{\widehat{r}}_{GP}})\approx \tfrac{{{r}_{GP}}}{T} }[/math] . Therefore:

[math]\displaystyle{ \sqrt{T}\left( \frac{{{{\hat{r}}}_{GP}}-{{r}_{GP}}}{\sqrt{{{r}_{GP}}}} \right)\sim N(0,1) }[/math]


The confidence bounds on the growth potential failure intensity are as follows:

[math]\displaystyle{ \begin{align} & {{r}_{L}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}-\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \\ & {{r}_{U}}= & {{{\hat{r}}}_{GP}}+\frac{{{C}^{2}}}{2}+\sqrt{{{{\hat{r}}}_{GP}}\,{{C}^{2}}+\frac{{{C}^{4}}}{4}} \end{align} }[/math]

where [math]\displaystyle{ C=\tfrac{{{z}_{1-\alpha /2}}}{\sqrt{T}} }[/math] .

Crow Bounds

The Crow bounds for the growth potential failure intensity are the same as the Fisher Matrix bounds.  




Bounds on Growth Potential MTBF

Fisher Matrix Bounds

[math]\displaystyle{ \begin{align} & MTB{{F}_{G{{P}_{L}}}}= & \frac{1}{{{r}_{U}}} \\ & MTB{{F}_{G{{P}_{U}}}}= & \frac{1}{{{r}_{L}}} \end{align} }[/math]

where [math]\displaystyle{ {{r}_{U}} }[/math] and [math]\displaystyle{ {{r}_{L}} }[/math] can be obtained from Eqn. (GPR).

Crow Bounds

The Crow bounds for the growth potential MTBF are the same as the Fisher Matrix bounds.