Template:Bounds on reliability rsa

From ReliaWiki
Revision as of 22:47, 10 January 2012 by Nicolette Young (talk | contribs) (Created page with '====Bounds on Reliability==== =====Fisher Matrix Bounds===== These bounds are based on: ::<math>\log it(\widehat{R}(t))\sim N(0,1)</math> ::<math>\log it(\widehat{R}(t))=\ln …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Bounds on Reliability

Fisher Matrix Bounds

These bounds are based on:

[math]\displaystyle{ \log it(\widehat{R}(t))\sim N(0,1) }[/math]


[math]\displaystyle{ \log it(\widehat{R}(t))=\ln \left\{ \frac{\widehat{R}(t)}{1-\widehat{R}(t)} \right\} }[/math]


The confidence bounds on reliability are given by:

[math]\displaystyle{ CB=\frac{\widehat{R}(t)}{\widehat{R}(t)+(1-\widehat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\widehat{R}(t))}/\left[ \widehat{R}(t)(1-\widehat{R}(t)) \right]}}} }[/math]


[math]\displaystyle{ Var(\widehat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\widehat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\widehat{\beta },\widehat{\lambda }) }[/math]


The variance calculation is the same as Eqns. (var1), (var2) and (var3).

[math]\displaystyle{ \begin{align} & \frac{\partial R}{\partial \beta }= & {{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}[\lambda {{t}^{\widehat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\widehat{\beta }}}\ln (t+d)] \\ & \frac{\partial R}{\partial \lambda }= & {{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}[{{t}^{\widehat{\beta }}}-{{(t+d)}^{\widehat{\beta }}}] \end{align} }[/math]


Crow Bounds

Failure Terminated Data
With failure terminated data, the 100( [math]\displaystyle{ 1-\alpha }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t }[/math] in a specified mission time [math]\displaystyle{ d }[/math] is:

[math]\displaystyle{ ({{[\widehat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}}) }[/math]
where
[math]\displaystyle{ \widehat{R}(\tau )={{e}^{-[\widehat{\lambda }{{(t+\tau )}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}} }[/math]

[math]\displaystyle{ {{p}_{1}} }[/math] and [math]\displaystyle{ {{p}_{2}} }[/math] can be obtained from Eqn. (ft).

Time Terminated Data
With time terminated data, the 100( [math]\displaystyle{ 1-\alpha }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t }[/math] in a specified mission time [math]\displaystyle{ \tau }[/math] is:

[math]\displaystyle{ ({{[\widehat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}}) }[/math]
where:
[math]\displaystyle{ \widehat{R}(d)={{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}} }[/math]

[math]\displaystyle{ {{p}_{1}} }[/math] and [math]\displaystyle{ {{p}_{2}} }[/math] can be obtained from Eqn. (tt).