Repairable Systems Analysis
Fielded Systems
The previous chapters presented analysis methods for data obtained during developmental testing. However, data from systems in the field can also be analyzed in RGA. This type of data is called fielded systems data and is analogous to warranty data. Fielded systems can be categorized into two basic types: one-time or nonrepairable systems and reusable or repairable systems. In the latter case, under continuous operation, the system is repaired, but not replaced after each failure. For example, if a water pump in a vehicle fails, the water pump is replaced and the vehicle is repaired. Two types of analysis are presented in this chapter. The first is repairable systems analysis where the reliability of a system can be tracked and quantified based on data from multiple systems in the field. The second is fleet analysis where data from multiple systems in the field can be collected and analyzed so that reliability metrics for the fleet as a whole can be quantified.
Repairable Systems Analysis
Background
Most complex systems, such as automobiles, communication systems, aircraft, printers, medical diagnostics systems, helicopters, etc., are repaired and not replaced when they fail. When these systems are fielded or subjected to a customer use environment, it is often of considerable interest to determine the reliability and other performance characteristics under these conditions. Areas of interest may include assessing the expected number of failures during the warranty period, maintaining a minimum mission reliability, evaluating the rate of wearout, determining when to replace or overhaul a system and minimizing life cycle costs. In general, a lifetime distribution, such as the Weibull distribution, cannot be used to address these issues. In order to address the reliability characteristics of complex repairable systems, a process is often used instead of a distribution. The most popular process model is the Power Law model. This model is popular for several reasons. One is that it has a very practical foundation in terms of minimal repair. This is the situation when the repair of a failed system is just enough to get the system operational again. Second, if the time to first failure follows the Weibull distribution, then each succeeding failure is governed by the Power Law model in the case of minimal repair. From this point of view, the Power Law model is an extension of the Weibull distribution.
Sometimes, the Crow Extended model , which was introduced in Chapter 9 for the developmental data, is also applied for fielded repairable systems. Applying the Crow Extended model on repairable system data allows analysts to project the system MTBF after reliability-related issues are addressed during the field operation. Projections are calculated based on the mode classifications (A, BC and BD). The calculation procedure is the same as the one for the developmental data.and is not repeated in this chapter.
Distribution Example
Visualize a socket into which a component is inserted at time
Each component life
A distribution, such as the Weibull, governs a single lifetime. There is only one event associated with a distribution. The distribution
A distribution is also characterized by its density function, such that:
The density function for the Weibull distribution is:
In addition, an important reliability property of a distribution function is the failure rate, which is given by:
The interpretation of the failure rate is that for a small interval of time
It is important to note the condition that the component has not failed by time
Process Example
Now suppose that a system consists of many components with each component in a socket. A failure in any socket constitutes a failure of the system. Each component in a socket is a renewal process governed by its respective distribution function. When the system fails due to a failure in a socket, the component is replaced and the socket is again as good as new. The system has been repaired. Because there are many other components still operating with various ages, the system is not typically put back into a like new condition after the replacement of a single component. For example, a car is not as good as new after the replacement of a failed water pump. Therefore, distribution theory does not apply to the failures of a complex system, such as a car. In general, the intervals between failures for a complex repairable system do not follow the same distribution. Distributions apply to the components that are replaced in the sockets but not at the system level. At the system level, a distribution applies to the very first failure. There is one failure associated with a distribution. For example, the very first system failure may follow a Weibull distribution.
For many systems in a real world environment, a repair is only enough to get the system operational again. If the water pump fails on the car, the repair consists only of installing a new water pump. If a seal leaks, the seal is replaced but no additional maintenance is done, etc. This is the concept of minimal repair. For a system with many failure modes, the repair of a single failure mode does not greatly improve the system reliability from what it was just before the failure. Under minimal repair for a complex system with many failure modes, the system reliability after a repair is the same as it was just before the failure. In this case, the sequence of failure at the system level follows a non-homogeneous Poisson process (NHPP).
The system age when the system is first put into service is time
Under minimal repair, the system intensity function is:
This is the Power Law model. It can be viewed as an extension of the Weibull distribution. The Weibull distribution governs the first system failure and the Power Law model governs each succeeding system failure. If the system has a constant failure intensity
Therefore, the probability
This is referred to as a homogeneous Poisson process because there is no change in the intensity function. This is a special case of the Power Law model for
Using the Power Law Model to Analyze Complex Repairable Systems
The Power Law model is often used to analyze the reliability for complex repairable systems in the field. A system of interest may be the total system, such as a helicopter, or it may be subsystems, such as the helicopter transmission or rotator blades. When these systems are new and first put into operation, the start time is
Some system types may be overhauled and some may not, depending on the maintenance policy. For example, an automobile may not be overhauled but helicopter transmissions may be overhauled after a period of time. In practice, an overhaul may not convert the system reliability back to where it was when the system was new. However, an overhaul will generally make the system more reliable. Appropriate data for the Power Law model is over cycles. If a system is not overhauled, then there is only one cycle and the zero time is when the system is first put into operation. If a system is overhauled, then the same serial number system may generate many cycles. Each cycle will start a new zero time, the beginning of the cycle. The age of the system is from the beginning of the cycle. For systems that are not overhauled, there is only one cycle and the reliability characteristics of a system as the system ages during its life is of interest. For systems that are overhauled, you are interested in the reliability characteristics of the system as it ages during its cycle.
For the Power Law model, a data set for a system will consist of a starting time
There are many ways to generate a random sample of
In addition, the warranty period may be of particular interest. In this case, randomly choose
This is the mission reliability for a system of age
Parameter Estimation
Suppose that the number of systems under study is
where
If
The following examples illustrate these estimation procedures.
Example 1
For the data in Table 13.1, the starting time for each system is equal to
System 1 ( |
System 2 ( |
System 3 ( |
---|---|---|
1.2 | 1.4 | 0.3 |
55.6 | 35.0 | 32.6 |
72.7 | 46.8 | 33.4 |
111.9 | 65.9 | 241.7 |
121.9 | 181.1 | 396.2 |
303.6 | 712.6 | 444.4 |
326.9 | 1005.7 | 480.8 |
1568.4 | 1029.9 | 588.9 |
1913.5 | 1675.7 | 1043.9 |
1787.5 | 1136.1 | |
1867.0 | 1288.1 | |
1408.1 | ||
1439.4 | ||
1604.8 | ||
Solution
Since the starting time for each system is equal to zero and each system has an equivalent ending time, the general Eqns. (lambdaPowerLaw) and (BetaPowerLaw) reduce to the closed form Eqns. (sample1) and (sample2). The maximum likelihood estimates of
The system failure intensity function is then estimated by:
Figure wpp intensity is a plot of
Goodness-of-Fit Tests for Repairable System Analysis
It is generally desirable to test the compatibility of a model and data by a statistical goodness-of-fit test. A parametric Cramér-von Mises goodness-of-fit test is used for the multiple system and repairable system Power Law model, as proposed by Crow in [17]. This goodness-of-fit test is appropriate whenever the start time for each system is 0 and the failure data is complete over the continuous interval
Cramér-von Mises Test
To illustrate the application of the Cramér-von Mises statistic for multiple system data, suppose that
Step 1: If
Step 2: For each system divide each successive failure time by the corresponding end time
Step 3: Next calculate
Step 4: Treat the
Step 5: Calculate the parametric Cramér-von Mises statistic.
Critical values for the Cramér-von Mises test are presented in Table B.2 of Appendix B.
Step 6: If the calculated
Example 2
For the data from Example 1, use the Cramér-von Mises test to examine the compatibility of the model at a significance level
Solution
Step 1:
Step 2: Calculate
Step 3: Calculate
Step 4: Calculate
Step 5: Find the critical value (CV) from Table B.2 for
Step 6: Since
Chi-Squared Test
The parametric Cramér-von Mises test described above requires that the starting time,
where
Confidence Bounds for Repairable Systems Analysis
Bounds on
Fisher Matrix Bounds
The parameter
All variance can be calculated using the Fisher Information Matrix.
Crow Bounds
Calculate the conditional maximum likelihood estimate of
The Crow 2-sided
Bounds on
Fisher Matrix Bounds
The parameter
The approximate confidence bounds on
where
Crow Bounds
Time Terminated
The confidence bounds on
Failure Terminated
The confidence bounds on
Bounds on Growth Rate
Since the growth rate is equal to
If Fisher Matrix confidence bounds are used then
Bounds on Cumulative MTBF
Fisher Matrix Bounds
The cumulative MTBF,
The approximate confidence bounds on the cumulative MTBF are then estimated from:
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:
Then
Bounds on Instantaneous MTBF
Fisher Matrix Bounds
The instantaneous MTBF,
The approximate confidence bounds on the instantaneous MTBF are then estimated from:
where:
The variance calculation is the same as (var1), (var2) and (var3).
Crow Bounds
Failure Terminated Data
To calculate the bounds for failure terminated data, consider the following equation:
Find the values
where
where
Time Terminated Data
To calculate the bounds for time terminated data, consider the following equation where
Find the values
Calculate
where
where
Bounds on Cumulative Failure Intensity
Fisher Matrix Bounds
The cumulative failure intensity,
The approximate confidence bounds on the cumulative failure intensity are then estimated using:
where:
and:
The variance calculation is the same as Eqns. (var1), (var2) and (var3):
Crow Bounds
The Crow cumulative failure intensity confidence bounds are given by:
Bounds on Instantaneous Failure Intensity
Fisher Matrix Bounds
The instantaneous failure intensity,
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
where
The variance calculation is the same as Eqns. (var1), (var2) and (var3):
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
Bounds on Time Given Cumulative MTBF
Fisher Matrix Bounds
The time,
The confidence bounds on the time are given by:
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
Step 1: Calculate:
Step 2: Estimate the number of failures:
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for
Bounds on Time Given Instantaneous MTBF
Fisher Matrix Bounds
The time,
The confidence bounds on the time are given by:
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in Section 5.5.2.
Step 2: Calculate the bounds on time as follows.
Failure Terminated Data
So the lower an upper bounds on time are:
Time Terminated Data
So the lower and upper bounds on time are:
Bounds on Time Given Cumulative Failure Intensity
Fisher Matrix Bounds
The time,
The confidence bounds on the time are given by:
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3):
Crow Bounds
Step 1: Calculate:
Step 2: Estimate the number of failures:
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for
Bounds on Time Given Instantaneous Failure Intensity
Fisher Matrix Bounds
These bounds are based on:
The confidence bounds on the time are given by:
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
Step 1: Calculate
Step 2: Use the equations from 13.1.7.9 to calculate the bounds on time given the instantaneous failure intensity.
Bounds on Reliability
Fisher Matrix Bounds
These bounds are based on:
The confidence bounds on reliability are given by:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
Failure Terminated Data
With failure terminated data, the 100(
where
Time Terminated Data
With time terminated data, the 100(
where:
Bounds on Time Given Reliability and Mission Time
Fisher Matrix Bounds
The time,
The confidence bounds on time are calculated by using:
where:
is calculated numerically from:
The variance calculations are done by:
Crow Bounds
Failure Terminated Data
Step 1: Calculate
Step 2: Let
Step 3: Let
Step 4: If
Time Terminated Data
Step 1: Calculate
Step 2: Let
Step 3: Let
Step 4: If
Bounds on Mission Time Given Reliability and Time
Fisher Matrix Bounds
The mission time,
The confidence bounds on mission time are given by using:
where:
Calculate
The variance calculations are done by:
Crow Bounds
Failure Terminated Data
Step 1: Calculate
Step 2: Let
Step 3: Let
Step 4: If
Time Terminated Data
Step 1: Calculate
Step 2: Let
Step 3: Let
Step 4: If
Bounds on Cumulative Number of Failures
Fisher Matrix Bounds
The cumulative number of failures,
where:
The variance calculation is the same as Eqns. (var1), (var2) and (var3).
Crow Bounds
where
Example 3
Using the data from Example 1, calculate the mission reliability at
Solution
The maximum likelihood estimates of
From Eq. (reliability), the mission reliability at
At the 90% confidence level and
The Crow confidence bounds for the mission reliability are:
Figures ConfReliFish and ConfRelCrow show the Fisher Matrix and Crow confidence bounds on mission reliability for mission time
Economical Life Model
One consideration in reducing the cost to maintain repairable systems is to establish an overhaul policy that will minimize the total life cost of the system. However, an overhaul policy makes sense only if
Denote
So the average system cost is:
The instantaneous maintenance cost at time
The following equation holds at optimum overhaul time
Therefore:
When there is no scheduled maintenance, Eqn. (ecolm) becomes:
The optimum overhaul time,
Fleet Analysis
Fleet analysis is similar to the repairable systems analysis described previously. The main difference is that a fleet of systems is considered and the models are applied to the fleet failures rather than to the system failures. In other words, repairable system analysis models the number of system failures versus system time; whereas fleet analysis models the number of fleet failures versus fleet time.
The main motivation for fleet analysis is to enable the application of the Crow Extended model for fielded data. In many cases, reliability improvements might be necessary on systems that are already in the field. These types of reliability improvements are essentially delayed fixes (BD modes) as described in Chapter 9.
Recall from Chapter 9 that in order to make projections using the Crow Extended model, the
Methodology
Figures Repairable and Fleet illustrate that the difference between repairable system data analysis and fleet analysis is the way that the dataset is treated. In fleet analysis, the time-to-failure data from each system is stacked to a cumulative timeline. For example, consider the two systems in Table 13.2.
System | Failure Times (hr) | End Time (hr) |
---|---|---|
1 | 3, 7 | 10 |
2 | 4, 9, 13 | 15 |
The data set is first converted to an accumulated timeline, as follows:
• System 1 is considered first. The accumulated timeline is therefore 3 and 7 hours.
• System 1's End Time is 10 hours. System 2's first failure is at 4 hours. This failure time is added to System 1's End Time to give an accumulated failure time of 14 hours.
• The second failure for System 2 occurred 5 hours after the first failure. This time interval is added to the accumulated timeline to give 19 hours.
• The third failure for System 2 occurred 4 hours after the second failure. The accumulated failure time is 19 + 4 = 23 hours.
• System 2's end time is 15 hours, or 2 hours after the last failure. The total accumulated operating time for the fleet is 25 hours (23 + 2 = 25).
In general, the accumulated operating time
where:
•
•
•
•
As this example demonstrates, the accumulated timeline is determined based on the order of the systems. So if you consider the data in Table 13.2 by taking System 2 first, the accumulated timeline would be: 4, 9, 13, 18, 22, with an end time of 25. Therefore, the order in which the systems are considered is somewhat important. However, in the next step of the analysis the data from the accumulated timeline will be grouped into time intervals, effectively eliminating the importance of the order of the systems. Keep in mind that this will NOT always be true. This is true only when the order of the systems was random to begin with. If there is some logic/pattern in the order of the systems, then it will remain even if the cumulative timeline is converted to grouped data. For example, consider a system that wears out with age. This means that more failures will be observed as this system ages and these failures will occur more frequently. Within a fleet of such systems, there will be new and old systems in operation. If the dataset collected is considered from the newest to the oldest system, then even if the data points are grouped, the pattern of fewer failures at the beginning and more failures at later time intervals will still be present. If the objective of the analysis is to determine the difference between newer and older systems, then that order for the data will be acceptable. However, if the objective of the analysis is to determine the reliability of the fleet, then the systems should be randomly ordered.
Data Analysis
Once the accumulated timeline has been generated, it is then converted into grouped data. To accomplish this, a group interval is required. The group interval length should be chosen so that it is representative of the data. Also note that the intervals do not have to be of equal length. Once the data points have been grouped, the parameters can be obtained using maximum likelihood estimation as described in Chapter 5 in the Grouped Data Analysis section. The data in Table 13.2 can be grouped into 5 hr intervals. This interval length is sufficiently large to insure that there are failures within each interval. The grouped data set is given in Table 13.3.
Failures in Interval | Interval End Time |
---|---|
1 | 5 |
1 | 10 |
1 | 15 |
1 | 20 |
1 | 25 |
The Crow-AMSAA model for Grouped Failure Times is used for the data in Table 13.3 and the parameters of the model are solved by satisfying the following maximum likelihood equations (Chapter 5).
Example 4
Table 13.4 presents data for a fleet of 27 systems. A cycle is a complete history from overhaul to overhaul. The failure history for the last completed cycle for each system is recorded. This is a random sample of data from the fleet. These systems are in the order in which they were selected. Suppose the intervals to group the current data are 10000, 20000, 30000, 40000 and the final interval is defined by the termination time. Conduct the fleet analysis.
Cycle Time |
Number of failures |
Failure Time | |
---|---|---|---|
1 | 1396 | 1 | 1396 |
2 | 4497 | 1 | 4497 |
3 | 525 | 1 | 525 |
4 | 1232 | 1 | 1232 |
5 | 227 | 1 | 227 |
6 | 135 | 1 | 135 |
7 | 19 | 1 | 19 |
8 | 812 | 1 | 812 |
9 | 2024 | 1 | 2024 |
10 | 943 | 2 | 316, 943 |
11 | 60 | 1 | 60 |
12 | 4234 | 2 | 4233, 4234 |
13 | 2527 | 2 | 1877, 2527 |
14 | 2105 | 2 | 2074, 2105 |
15 | 5079 | 1 | 5079 |
16 | 577 | 2 | 546, 577 |
17 | 4085 | 2 | 453, 4085 |
18 | 1023 | 1 | 1023 |
19 | 161 | 1 | 161 |
20 | 4767 | 2 | 36, 4767 |
21 | 6228 | 3 | 3795, 4375, 6228 |
22 | 68 | 1 | 68 |
23 | 1830 | 1 | 1830 |
24 | 1241 | 1 | 1241 |
25 | 2573 | 2 | 871, 2573 |
26 | 3556 | 1 | 3556 |
27 | 186 | 1 | 186 |
Total | 52110 | 37 |
Solution
For the system data in Table 13.4, the data can be grouped into 10000, 20000, 30000, 4000 and 52110 time intervals. Table 13.5 gives the grouped data.
Observed Failures | |
---|---|
10000 | 8 |
20000 | 16 |
30000 | 22 |
40000 | 27 |
52110 | 37 |
Based on the above time intervals, the maximum likelihood estimates of
Figure fle shows the System Operation plot.
Applying the Crow Extended Model to Fleet Data
As it was mentioned previously, the main motivation of the fleet analysis is to apply the Crow Extended model for in-service reliability improvements. The methodology to be used is identical to the application of the Crow Extended model for Grouped Data described in Chapter 9. Consider the fleet data in Table 13.4. In order to apply the Crow Extended model, put
And
Mode | Mode | |||||
---|---|---|---|---|---|---|
1 | 1396 | BD1 | 20 | 26361 | BD1 | |
2 | 5893 | BD2 | 21 | 26392 | A | |
3 | 6418 | A | 22 | 26845 | BD8 | |
4 | 7650 | BD3 | 23 | 30477 | BD1 | |
5 | 7877 | BD4 | 24 | 31500 | A | |
6 | 8012 | BD2 | 25 | 31661 | BD3 | |
7 | 8031 | BD2 | 26 | 31697 | BD2 | |
8 | 8843 | BD1 | 27 | 36428 | BD1 | |
9 | 10867 | BD1 | 28 | 40223 | BD1 | |
10 | 11183 | BD5 | 29 | 40803 | BD9 | |
11 | 11810 | A | 30 | 42656 | BD1 | |
12 | 11870 | BD1 | 31 | 42724 | BD10 | |
13 | 16139 | BD2 | 32 | 44554 | BD1 | |
14 | 16104 | BD6 | 33 | 45795 | BD11 | |
15 | 18178 | BD7 | 34 | 46666 | BD12 | |
16 | 18677 | BD2 | 35 | 48368 | BD1 | |
17 | 20751 | BD4 | 36 | 51924 | BD13 | |
18 | 20772 | BD2 | 37 | 52110 | BD2 | |
19 | 25815 | BD1 |
Each system failure time in Table 13.4 corresponds to a problem and a cause (failure mode). The management strategy can be to not fix the failure mode (A mode) or to fix the failure mode with a delayed corrective action (BD mode). There are
The first term is estimated by:
The second term is:
This estimates the growth potential failure intensity:
To estimate the last term
No. of Distinct BD Mode Failures | Length | Accumulated Time | |
---|---|---|---|
1 | MI |
L |
S |
2 | MI |
L |
S |
. | . | . | . |
. | . | . | . |
. | . | . | . |
D | MI |
L |
S |
The term
No. of Distinct BD Mode Failures | Length | Accumulated Time | |
---|---|---|---|
1 | 4 | 10000 | 10000 |
2 | 3 | 10000 | 20000 |
3 | 1 | 10000 | 30000 |
4 | 0 | 10000 | 40000 |
5 | 5 | 12110 | 52110 |
Total | 13 |
Thus:
This gives:
Consequently, for
The projected failure intensity is:
This estimates that the 13 proposed corrective actions will reduce the number of failures per cycle of operation hours from the current
Confidence Bounds
For fleet data analysis using the Crow-AMSAA model, the confidence bounds are calculated using the same procedure as described in Section 5.4. For fleet data analysis using the Crow Extended model, the confidence bounds are calculated using the same procedure as described in Section 9.6.1.
General Examples
Example 5 (fleet data)
Eleven systems from the field were chosen for the purposes of a fleet analysis. Each system had at least one failure. All of the systems had a start time equal to zero and the last failure for each system corresponds to the end time. Group the data based on a fixed interval of 3000 hours and assume a fixed effectiveness factor equal to 0.4. Do the following:
1) Estimate the parameters of the Crow Extended model.
2) Based on the analysis does it appear that the systems were randomly ordered?
3) After the implementation of the delayed fixes, how many failures would you expect within the next 4000 hours of fleet operation.
- Table 13.9 - Fleet data for Example 5
System | Times-to-Failure |
---|---|
1 | 1137 BD1, 1268 BD2 |
2 | 682 BD3, 744 A, 1336 BD1 |
3 | 95 BD1, 1593 BD3 |
4 | 1421 A |
5 | 1091 A, 1574 BD2 |
6 | 1415 BD4 |
7 | 598 BD4, 1290 BD1 |
8 | 1556 BD5 |
9 | 55 BD4 |
10 | 730 BD1, 1124 BD3 |
11 | 1400 BD4, 1568 A |
Solution to Example 5=
1) Figure Repair1 shows the estimated Crow Extended parameters.
2) Upon observing the estimated parameter
Example 6 (repairable system data)
This case study is based on the data given in the article Graphical Analysis of Repair Data by Dr. Wayne Nelson [23]. The data in Table 13.10 represents repair data on an automatic transmission from a sample of 34 cars. For each car, the data set shows mileage at the time of each transmission repair, along with the latest mileage. The + indicates the latest mileage observed without failure. Car 1, for example, had a repair at 7068 miles and was observed until 26,744 miles. Do the following:
1) Estimate the parameters of the Power Law model.
2) Estimate the number of warranty claims for a 36,000 mile warranty policy for an estimated fleet of 35,000 vehicles.
- Table 13.10 - Automatic transmission data
Car | Mileage | Car | Mileage | |
---|---|---|---|---|
1 | 7068, 26744+ | 18 | 17955+ | |
2 | 28, 13809+ | 19 | 19507+ | |
3 | 48, 1440, 29834+ | 20 | 24177+ | |
4 | 530, 25660+ | 21 | 22854+ | |
5 | 21762+ | 22 | 17844+ | |
6 | 14235+ | 23 | 22637+ | |
7 | 1388, 18228+ | 24 | 375, 19607+ | |
8 | 21401+ | 25 | 19403+ | |
9 | 21876+ | 26 | 20997+ | |
10 | 5094, 18228+ | 27 | 19175+ | |
11 | 21691+ | 28 | 20425+ | |
12 | 20890+ | 29 | 22149+ | |
13 | 22486+ | 30 | 21144+ | |
14 | 19321+ | 31 | 21237+ | |
15 | 21585+ | 32 | 14281+ | |
16 | 18676+ | 33 | 8250, 21974+ | |
17 | 23520+ | 34 | 19250, 21888+ |
Solution to Example 6
1) The estimated Power Law parameters are shown in Figure Repair3.
2) The expected number of failures at 36,000 miles can be estimated using the QCP as shown in Figure Repair4. The model predicts that 0.3559 failures per system will occur by 36,000 miles. This means that for a fleet of 35,000 vehicles, the expected warranty claims are 0.3559 * 35,000 = 12,456.
Example 7 (repairable system data)
Field data have been collected for a system that begins its wearout phase at time zero. The start time for each system is equal to zero and the end time for each system is 10,000 miles. Each system is scheduled to undergo an overhaul after a certain number of miles. It has been determined that the cost of an overhaul is four times more expensive than a repair. Table 13.11 presents the data. Do the following:
1) Estimate the parameters of the Power Law model.
2) Determine the optimum overhaul interval.
3) If
- Table 13.11 - Field data
System 1 | System 2 | System 3 |
---|---|---|
1006.3 | 722.7 | 619.1 |
2261.2 | 1950.9 | 1519.1 |
2367 | 3259.6 | 2956.6 |
2615.5 | 4733.9 | 3114.8 |
2848.1 | 5105.1 | 3657.9 |
4073 | 5624.1 | 4268.9 |
5708.1 | 5806.3 | 6690.2 |
6464.1 | 5855.6 | 6803.1 |
6519.7 | 6325.2 | 7323.9 |
6799.1 | 6999.4 | 7501.4 |
7342.9 | 7084.4 | 7641.2 |
7736 | 7105.9 | 7851.6 |
8246.1 | 7290.9 | 8147.6 |
7614.2 | 8221.9 | |
8332.1 | 9560.5 | |
8368.5 | 9575.4 | |
8947.9 | ||
9012.3 | ||
9135.9 | ||
9147.5 | ||
9601 |
Solution to Example 7
1) Figure Repair5 shows the estimated Power Law parameters.
2) The QCP can be used to calculate the optimum overhaul interval as shown in Figure Repair6.
3) Since
Example 8 (repairable system data)
Failures and fixes of two repairable systems in the field are recorded. Both systems start from time 0. System 1 ends at time = 504 and system 2 ends at time = 541. All the BD modes are fixed at the end of the test. A fixed effectiveness factor equal to 0.6 is used. Answer the following questions:
1) Estimate the parameters of the Crow Extended model.
2) Calculate the projected MTBF after the delayed fixes.
3) What is the expected number of failures at time 1,000, if no fixes were performed for the future failures?
Solution to Example 8
1) Figure CrowExtendedRepair shows the estimated Crow Extended parameters.
2) Figure CrowExtendedMTBF shows the projected MTBF at time = 541 (i.e. the age of the oldest system).
3) Figure CrowExtendedNumofFailure shows the expected number of failures at time = 1,000.