|
|
Line 1: |
Line 1: |
| ====Eyring-Exponential Reliability Function====
| | #REDIRECT [[Eyring_Relationship#Eyring-Exponential]] |
| <br>
| |
| The Eyring-exponential reliability function is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| | |
| <br>
| |
| This function is the complement of the Eyring-exponential cumulative distribution function or:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT</math>
| |
| | |
| <br>
| |
| and:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-\int_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| | |
| <br>
| |