|
|
Line 1: |
Line 1: |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| | #REDIRECT[[Gumbel_Distribution_Example]] |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEDF7|[[Image:Weibull_Examples_Banner.png|400px|center]]
| |
| |}
| |
| <br>
| |
| Verify using Monte Carlo simulation that if <math>{{t}_{i}}</math> follows a Weibull distribution with <math>\beta </math> and <math>\eta </math> , then the <math>Ln({{t}_{i}})</math> follows a Gumbel distribution with <math>\mu =\ln (\eta )</math> and <math>\sigma =1/\beta.</math>
| |
| | |
| Let us assume that <math>{{t}_{i}}</math> follows a Weibull distribution with <math>\beta =0.5</math> and <math>\eta =10000.</math> The Monte Carlo simulation tool in Weibull++ can be used to generate a set of random numbers that follow a Weibull distribution with the specified parameters.
| |
| | |
| [[Image:montecarlo4eva.png|thumb|center|400px| ]]
| |
| | |
| Other simulation settings are:
| |
| | |
| [[Image:Gumbel Distribution Example 1 Simulation Setting.png|thumb|center|400px| ]]
| |
| | |
| After obtaining the random time values <math>{{t}_{i}}</math> , insert a new data sheet into the folio. In this sheet enter the <math>Ln({{t}_{i}})</math> values using the LN function and referring to the cells in the sheet that contains the <math>{{t}_{i}}</math> values. Delete any negative values, if there are any (since Weibull++ expects all time values to be positive). Calculate the parameters of the Gumbel distribution that fits the <math>Ln({{t}_{i}})</math> values.
| |
| | |
| Using maximum likelihood as the analysis method, the estimated parameters are:
| |
| | |
| ::<math>\begin{align}
| |
| & \hat{\mu }= & 9.3816 \\
| |
| & \hat{\sigma }= & 1.9717
| |
| \end{align}</math>
| |
| | |
| | |
| Since <math>\ln (\eta )=</math> 9.2103 ( <math>\simeq 9.3816</math> ) and <math>1/\beta =2</math> <math>(\simeq 1.9717),</math> then this simulation verifies that <math>Ln({{t}_{i}})</math> follows a Gumbel distribution with <math>\mu =\ln (\eta )</math> and <math>\delta =1/\beta .</math>
| |
| | |
| Note: This example illustrates a property of the Gumbel distribution; it is not meant to be a formal proof.
| |