|
|
Line 1: |
Line 1: |
| ===Rank Regression on Y===
| | #REDIRECT [[The Lognormal Distribution]] |
| Performing a rank regression on Y requires that a straight line be fitted to a set of data points such that the sum of the squares of the vertical deviations from the points to the line is minimized.
| |
| | |
| The least squares parameter estimation method, or regression analysis, was discussed in [[Parameter Estimation]] Chapter and the following equations for regression on Y were derived, and are again applicable:
| |
| | |
| ::<math>\hat{a}=\bar{y}-\hat{b}\bar{x}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\hat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}}}{N}</math>
| |
| | |
| and:
| |
| | |
| ::<math>\hat{b}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}}{{y}_{i}}-\tfrac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}}\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}}{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,x_{i}^{2}-\tfrac{{{\left( \underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{x}_{i}} \right)}^{2}}}{N}}</math>
| |
| | |
| In our case the equations for <math>{{y}_{i}}</math> and <math>x_{i}</math> are:
| |
| | |
| ::<math>{{y}_{i}}={{\Phi }^{-1}}\left[ F(t_{i}^{\prime }) \right]</math>
| |
| | |
| and:
| |
| | |
| ::<math>{{x}_{i}}=t_{i}^{\prime }</math>
| |
| | |
| where the <math>F(t_{i}^{\prime })</math> is estimated from the median ranks. Once <math>\widehat{a}</math> and <math>\widehat{b}</math> are obtained, then <math>\widehat{\sigma }</math> and <math>\widehat{\mu }</math> can easily be obtained from the above equations.
| |
| | |
| {{The Correlation Coefficient Calculation}}
| |
| | |
| | |
| '''Example 2:'''
| |
| {{Example: Lognormal Distribution RRY}}
| |