|
|
Line 1: |
Line 1: |
| == Actuarial-Simple Method ==
| | #REDIRECT [[Non-Parametric Life Data Analysis]] |
| | |
| The actuarial-simple method is an easy-to-use form of non-parametric data analysis that can be used for multiple censored data that are arranged in intervals. This method is based on calculating the number of failures in a time interval, <span class="texhtml">''r''<sub>''j''</sub>,</span> versus the number of operating units in that time period, <span class="texhtml">''n''<sub>''j''</sub></span> . The equation for the reliability estimator for the standard actuarial method is given by:
| |
| | |
| ::<math>\widehat{R}({{t}_{i}})=\underset{j=1}{\overset{i}{\mathop \prod }}\,\left( 1-\frac{{{r}_{j}}}{{{n}_{j}}} \right),\text{ }i=1,...,m</math>
| |
| | |
| where:
| |
| | |
| ::<math>\begin{align}
| |
| & m= \text{the total number of intervals} \\
| |
| & n= \text{the total number of units}
| |
| \end{align}</math>
| |
| | |
| The variable <span class="texhtml">''n''<sub>''i''</sub></span> is defined by:
| |
| | |
| ::<math>{{n}_{i}}=n-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{s}_{j}}-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{r}_{j,}}\text{ }i=1,...,m</math>
| |
| | |
| where:
| |
| | |
| ::<math>\begin{align}
| |
| & {{r}_{j}}= \text{the number of failures in interval }j \\
| |
| & {{s}_{j}}= \text{the number of suspensions in interval }j
| |
| \end{align}</math>
| |
| | |
| <br>'''Example 2:''' {{Example: Simple-Actuarial Example}}
| |