Appendix: Log-Likelihood Equations: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Template:LDABOOK_SUB|Appendix D|Log-Likelihood Equations}}
{{Template:LDABOOK|Appendix D|Log-Likelihood Equations}}


This appendix covers the log-likelihood functions and their associated partial derivatives for most of the distributions available in Weibull++. These distributions are discussed in more detail in the chapter for each distribution.  
This appendix covers the log-likelihood functions and their associated partial derivatives for most of the distributions available in Weibull++. These distributions are discussed in more detail in the chapter for each distribution.  
Line 155: Line 155:
:*<math>T_{Ri}^{\prime \prime }\,\!</math> is the ending of the <math>{{i}^{th}}\,\!</math> interval
:*<math>T_{Ri}^{\prime \prime }\,\!</math> is the ending of the <math>{{i}^{th}}\,\!</math> interval


The two-parameter solution will be found by solving for a pair of parameters (<math>\widehat{\lambda },\widehat{\gamma }),\,\!</math> such that <math>\tfrac{\partial \Lambda }{\partial \lambda }=0,\tfrac{\partial \Lambda }{\partial \gamma }=0.\,\!</math> For the one-parameter case, solve for <math>\tfrac{\partial \Lambda }{\partial \lambda }=0.\,\!</math>
To find the two-parameter solution, look at the partial derivatives <math>\tfrac{\partial \Lambda }{\partial \lambda }</math> and <math>\tfrac{\partial \Lambda }{\partial \gamma}</math>:


::<math>\begin{align}
::<math>\begin{align}
Line 163: Line 163:
\end{align}\,\!</math>
\end{align}\,\!</math>


and:
and
 
::<math>\frac{\partial \Lambda }{\partial \gamma }=\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\lambda +\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\lambda +\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\lambda \,\!</math>
 
Examination the derivative for <math>\gamma\,\!</math> will reveal that:
 
::<math>\frac{\partial \Lambda }{\partial \gamma }=\left( \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ \ +\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime } \right)\lambda \equiv 0\,\!</math>
 
The above equation will be equal to zero only if either:
 
::<math>\lambda =0\,\!</math>


or:
::<math>Λγ=Fei=1Niλ+Si=1Niλ+FIi=1Niλ</math>.


::<math>\left( \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ \ +\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime } \right)=0\,\!</math>
From here we see that <math>\frac{\partial \Lambda }{\partial \gamma}</math> is a positive, constant function of <math>\gamma</math>.  As alluded to in the chapter on the exponential distribution, this implies that the log-likelihood function <math>\Lambda</math> is, for fixed <math>\lambda</math>, an increasing function of <math>\gamma</math>.  Thus the MLE for <math>\gamma</math> is its largest possible value <math>T_1</math>.  Therefore, to find the full MLE solution <math>(\widehat{\lambda },\widehat{\gamma})</math> for the two-parameter exponential distribution, one should set <math>\gamma</math> equal to the first failure time and then find (numerically) a <math>\lambda</math> such that <math>\tfrac{\partial \Lambda}{\partial \lambda} = 0</math>.


This is an unwelcome fact, alluded to earlier in the chapter, that essentially indicates that there is no realistic solution for the two-parameter MLE for exponential. The above equations indicate that there is no non-trivial MLE solution that satisfies both <math>\tfrac{\partial \Lambda }{\partial \lambda }=0,\tfrac{\partial \Lambda }{\partial \gamma }=0.\,\!</math>
The 3D Plot utility in Weibull++ further illustrates this behavior of the log-likelihood function, as shown next:
It can be shown that the best solution for <math>\gamma ,\,\!</math> satisfying the constraint that <math>\gamma \le {{T}_{1}}\,\!</math> is <math>\gamma ={{T}_{1}}.\,\!</math> To then solve for the two-parameter exponential distribution via MLE, one can set  equal to the first time-to-failure, and then find a <math>\lambda \,\!</math> such that <math>\tfrac{\partial \Lambda }{\partial \lambda }=0.\,\!</math>
 
Using this methodology, a maximum can be achieved along the <math>\lambda \,\!</math>-axis, and a local maximum along the <math>\gamma \,\!</math>-axis at <math>\gamma ={{T}_{1}}\,\!</math>, constrained by the fact that <math>\gamma \le {{T}_{1}}\,\!</math>. The 3D Plot utility in Weibull++ illustrates this behavior of the log-likelihood function, as shown next:


[[image: appendixc__127.gif|center|350px]]
[[image: appendixc__127.gif|center|350px]]
Line 231: Line 218:
where:
where:


::<math>\phi \left( x \right)=\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( x \right)}^{2}}}}\,\!</math>
::<math>\phi \left( x \right)=\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{{{x}^{2}}}{2}}}\,\!</math>


and:
and:
Line 256: Line 243:


::<math>\begin{align}
::<math>\begin{align}
   \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{{{\sigma }_{{{T}'}}}}\phi \left( \frac{\ln \left( {{T}_{i}} \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right] \  
   \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{{{T}_{i}} {{\sigma }_{{{T}'}}}}\phi \left( \frac{\ln \left( {{T}_{i}} \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right] \  
   & \text{ }+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ln \left[ 1-\Phi \left( \frac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right] \  
   & \text{ }+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ln \left[ 1-\Phi \left( \frac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right] \  
   & \text{ }+\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\ln \left[ \Phi \left( \frac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \frac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right]   
   & \text{ }+\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\ln \left[ \Phi \left( \frac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \frac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right) \right]   
Line 277: Line 264:


The solution will be found by solving for a pair of parameters <math>\left( {\mu }',{{\sigma }_{{{T}'}}} \right)\,\!</math> so that <math>\tfrac{\partial \Lambda }{\partial {\mu }'}=0\,\!</math> and <math>\tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0\,\!</math>:
The solution will be found by solving for a pair of parameters <math>\left( {\mu }',{{\sigma }_{{{T}'}}} \right)\,\!</math> so that <math>\tfrac{\partial \Lambda }{\partial {\mu }'}=0\,\!</math> and <math>\tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0\,\!</math>:




::<math>\begin{align}
::<math>\begin{align}
   \frac{\partial \Lambda }{\partial {\mu }'}= & \frac{1}{\sigma _{{{T}'}}^{2}}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}(\ln ({{T}_{i}})-{\mu }') \  
   \frac{\partial \Lambda }{\partial {\mu }'}= & \frac{1}{\sigma _{{{T}'}}^{2}}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,N_{i}(\ln ({{T}_{i}})-{\mu }') \  
   & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} \  
   & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} \  
   & \ \ -\underset{i=1}{\overset{FI}{\mathop \sum }}\,\frac{N_{i}^{\prime \prime }}{\sigma }\frac{\phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{\Phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}   
   & \ \ -\underset{i=1}{\overset{FI}{\mathop \sum }}\,\frac{N_{i}^{\prime \prime }}{\sigma }\frac{\phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{\Phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}   
\end{align}\,\!</math>
::<math>\begin{align}
  \frac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}= & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,N_{i}\left( \frac{{{\left( \ln ({{T}_{i}})-{\mu }' \right)}^{2}}}{\sigma _{{{T}'}}^{3}}-\frac{1}{{{\sigma }_{{{T}'}}}} \right) \
  & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} \
  & -\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\frac{\left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{\Phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} 
\end{align}\,\!</math>
\end{align}\,\!</math>


where:
where:


::<math>\phi \left( x \right)=\frac{1}{\sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( x \right)}^{2}}}}\,\!</math>
::<math>\phi \left( x \right)=\frac{1}{\sqrt{2\pi }}\cdot {{e}^{-\tfrac{{{x}^{2}}}{2}}}\,\!</math>


and:
and:
Line 295: Line 291:
===  Mixed Weibull Log-Likelihood Functions and their Partials===
===  Mixed Weibull Log-Likelihood Functions and their Partials===
The log-likelihood function  (without the constant) is composed of three summation portions:  
The log-likelihood function  (without the constant) is composed of three summation portions:  
::<math>\begin{align}
  \frac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}= & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{{{\left( \ln ({{T}_{i}})-{\mu }' \right)}^{2}}}{\sigma _{{{T}'}}^{3}}-\frac{1}{{{\sigma }_{{{T}'}}}} \right) \
  & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} \
  & -\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\frac{\left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}{\Phi \left( \tfrac{\ln \left( T_{Ri}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)-\Phi \left( \tfrac{\ln \left( T_{Li}^{\prime \prime } \right)-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)} 
\end{align}\,\!</math>


::<math>\begin{align}
::<math>\begin{align}

Latest revision as of 19:13, 15 September 2023

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/life_data_analysis

Chapter Appendix D: Appendix: Log-Likelihood Equations


Weibullbox.png

Chapter Appendix D  
Appendix: Log-Likelihood Equations  

Synthesis-icon.png

Available Software:
Weibull++

Examples icon.png

More Resources:
Weibull++ Examples Collection


This appendix covers the log-likelihood functions and their associated partial derivatives for most of the distributions available in Weibull++. These distributions are discussed in more detail in the chapter for each distribution.

Weibull Log-Likelihood Functions and their Partials

The Two-Parameter Weibull

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln[βη(Tiη)β1e(Tiη)β]Si=1Ni(Tiη)β +FIi=1Niln[e(TLiη)βe(TRiη)β]

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • β is the Weibull shape parameter (unknown a priori, the first of two parameters to be found)
  • η is the Weibull scale parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval failure data groups
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

For the purposes of MLE, left censored data will be considered to be intervals with TLi=0.

The solution will be found by solving for a pair of parameters (β^,η^) so that Λβ=0 and Λη=0. It should be noted that other methods can also be used, such as direct maximization of the likelihood function, without having to compute the derivatives.


Λβ=1βFei=1Ni+Fei=1Niln(Tiη)Fei=1Ni(Tiη)βln(Tiη)Si=1Ni(Tiη)βln(Tiη)+FIi=1Ni(TLiη)βln(TLiη)e(TLiη)β+(TRiη)βln(TRiη)e(TRiη)βe(TLiη)βe(TRiη)β


Λη=βηFei=1Ni+βηFei=1Ni(Tiη)β+βηSi=1Ni(Tiη)β+FIi=1Ni(βη)(TLiη)βe(TLiη)β(βη)(TRiη)βe(TRiη)βe(TLiη)βe(TRiη)β

The Three-Parameter Weibull

This log-likelihood function is again composed of three summation portions:

ln(L)=Λ=Fei=1Niln[βη(Tiγη)β1e(Tiγη)β]Si=1Ni(Tiγη)β+FIi=1Niln[e(TLiγη)βe(TRiγη)β]

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • β is the Weibull shape parameter (unknown a priori, the first of three parameters to be found)
  • η is the Weibull scale parameter (unknown a priori, the second of three parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • γ is the Weibull location parameter (unknown a priori, the third of three parameters to be found)
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval data groups
  • Ni is the number of intervals in the ith group of data intervals
  • TLi is the beginning of the ith interval
  • and TRi is the ending of the ith interval

The solution is found by solving for (β^,η^,γ^) so that Λβ=0, Λη=0, and Λγ=0.


Λβ=1βFei=1Ni+Fei=1Niln(Tiγη)Fei=1Ni(Tiγη)βln(Tiγη)Si=1Ni(Tiγη)βln(Tiγη)+FIi=1Ni(TLiγη)βln(TLiγη)e(TLiγη)βe(TLiγη)βe(TRiγη)β+FIi=1Ni(TRiγη)βln(TRiγη)e(TRiγη)βe(TLiγη)βe(TRiγη)β


Λη=βηFei=1Ni+βηFei=1Ni(Tiγη)β+Si=1Ni(Tiγη)β(βη)+FIi=1Niβη(TLiγη)βln(TLiγη)e(TLiγη)βe(TLiγη)βe(TRiγη)βFIi=1Niβη(TRiγη)βln(TRiγη)e(TRiγη)βe(TLiγη)βe(TRiγη)β



Λγ=(1β)Fei=1(NiTiγ)+Fei=1Ni(Tiγη)β(βTiγ)+Si=1Ni(Tiγη)β(βTiγ)+FIi=1NiβTLiγ(TLiγη)βe(TLiγη)ββTRiγ(TRiγη)βe(TRiγη)βe(TLiγη)βe(TRiγη)β


It should be pointed out that the solution to the three-parameter Weibull via MLE is not always stable and can collapse if β1. In estimating the true MLE of the three-parameter Weibull distribution, two difficulties arise. The first is a problem of non-regularity and the second is the parameter divergence problem, as discussed in Hirose [14].

Non-regularity occurs when β2. In general, there are no MLE solutions in the region of 0<β<1. When 1<β<2, MLE solutions exist but are not asymptotically normal, as discussed in Hirose [14]. In the case of non-regularity, the solution is treated anomalously.

Weibull++ attempts to find a solution in all of the regions using a variety of methods, but the user should be forewarned that not all possible data can be addressed. Thus, some solutions using MLE for the three-parameter Weibull will fail when the algorithm has reached predefined limits or fails to converge. In these cases, the user can change to the non-true MLE approach (in Weibull++ Application Setup), where γ is estimated using non-linear regression. Once γ is obtained, the MLE estimates of β^ and η^ are computed using the transformation Ti=(Tiγ).

Exponential Log-Likelihood Functions and their Partials

The One-Parameter Exponential

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln[λeλTi]Si=1NiλTi+FIi=1Niln[eλTLieλTRi]

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • λ is the failure rate parameter (unknown a priori, the only parameter to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in the ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval data groups
  • Ni is the number of intervals in the ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

The solution will be found by solving for a parameter λ^ so that Λλ=0. Note that for FI=0 there exists a closed form solution.

Λλ=Fei=1Ni(1λTi)Si=1NiTiFIi=1Ni[TLieλTLiTRieλTRieλTLieλTRi]

The Two-Parameter Exponential

This log-likelihood function for the two-parameter exponential distribution is very similar to that of the one-parameter distribution and is composed of three summation portions:


ln(L)=Λ=Fei=1Niln[λeλ(Tiγ)]Si=1Niλ(Tiγ)  +FIi=1Niln[eλ(TLiγ)eλ(TRiγ)],

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • λ is the failure rate parameter (unknown a priori, the first of two parameters to be found)
  • γ is the location parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in the ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval data groups
  • Ni is the number of intervals in the ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

To find the two-parameter solution, look at the partial derivatives Λλ and Λγ:

Λλ=Fei=1Ni[1λ(Tiγ)]Si=1Ni(Tiγ)FIi=1Ni[(TLiγ)eλ(TLiγ0)(TRiγ)eλ(TRiγ)eλ(TLiγ)eλ(TRiγ)]

and

Λγ=Fei=1Niλ+Si=1Niλ+FIi=1Niλ.

From here we see that Λγ is a positive, constant function of γ. As alluded to in the chapter on the exponential distribution, this implies that the log-likelihood function Λ is, for fixed λ, an increasing function of γ. Thus the MLE for γ is its largest possible value T1. Therefore, to find the full MLE solution (λ^,γ^) for the two-parameter exponential distribution, one should set γ equal to the first failure time and then find (numerically) a λ such that Λλ=0.

The 3D Plot utility in Weibull++ further illustrates this behavior of the log-likelihood function, as shown next:

Appendixc 127.gif

Normal Log-Likelihood Functions and their Partials

The complete normal likelihood function (without the constant) is composed of three summation portions:


ln(L)=Λ=Fei=1Niln[1σϕ(Tiμσ)]+Si=1Niln[1Φ(Tiμσ)] +Fii=1Niln[Φ(TRiμσ)Φ(TLiμσ)]


where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the mean parameter (unknown a priori, the first of two parameters to be found)
  • σ is the standard deviation parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in the ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • Fi is the number of interval data groups
  • Ni is the number of intervals in the ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

The solution will be found by solving for a pair of parameters (μ0,σ0) so that Λμ=0 and Λσ=0.


Λμ=1σ2Fei=1Ni(Tiμ)+1σSi=1Niϕ(Tiμσ)1Φ(Tiμσ)1σFii=1Niϕ(TRiμσ)ϕ(TLiμσ)Φ(TRiμσ)Φ(TLiμσ)


Λσ=Fei=1Ni((Tiμ)2σ31σ)+1σSi=1Ni(Tiμσ)ϕ(Tiμσ)1Φ(Tiμσ)1σFii=1Ni(TRiμσ)ϕ(TRiμσ)(TLiμσ)ϕ(TLiμσ)Φ(TRiμσ)Φ(TLiμσ)

where:

ϕ(x)=12πex22

and:

Φ(x)=12πxet22dt


Complete Data

Note that for the normal distribution, and in the case of complete data only (as was shown in Basic Statistical Background), there exists a closed-form solution for both of the parameters or:


μ^=T¯^=1NNi=1Ti

and:

σ^T2=1NNi=1(TiT¯)2σ^T=1NNi=1(TiT¯)2

Lognormal Log-Likelihood Functions and their Partials

The general log-likelihood function (without the constant) for the lognormal distribution is composed of three summation portions:


ln(L)=Λ=Fei=1Niln[1TiσTϕ(ln(Ti)μσT)] +Si=1Niln[1Φ(ln(Ti)μσT)] +FIi=1Niln[Φ(ln(TRi)μσT)Φ(ln(TLi)μσT)]

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the mean of the natural logarithms of the times-to-failure (unknown a priori, the first of two parameters to be found)
  • σT is the standard deviation of the natural logarithms of the times-to-failure (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in the ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval data groups
  • Ni is the number of intervals in the ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

The solution will be found by solving for a pair of parameters (μ,σT) so that Λμ=0 and ΛσT=0:


Λμ=1σT2Fei=1Ni(ln(Ti)μ)+1σTSi=1Niϕ(ln(Ti)μσT)1Φ(ln(Ti)μσT)  FIi=1Niσϕ(ln(TRi)μσT)ϕ(ln(TLi)μσT)Φ(ln(TRi)μσT)Φ(ln(TLi)μσT)


ΛσT=Fei=1Ni((ln(Ti)μ)2σT31σT)+1σTSi=1Ni(ln(Ti)μσT)ϕ(ln(Ti)μσT)1Φ(ln(Ti)μσT)1σTFIi=1Ni(ln(TRi)μσT)ϕ(ln(TRi)μσT)(ln(TLi)μσT)ϕ(ln(TLi)μσT)Φ(ln(TRi)μσT)Φ(ln(TLi)μσT)

where:

ϕ(x)=12πex22

and:

Φ(x)=12πxet22dt

Mixed Weibull Log-Likelihood Functions and their Partials

The log-likelihood function (without the constant) is composed of three summation portions:

ln(L)=Λ=Fei=1Niln[Qk=1ρkβkηk(Tiηk)βk1e(Tiηk)βk] +Si=1Niln[Qk=1ρke(Tiηk)βk] +FIi=1Niln[Qk=1ρkβkηk(TLi+TRi2ηk)βk1e(TLi+TRi2ηk)βk]

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • Q is the number of subpopulations
  • ρk is the proportionality of the kth subpopulation (unknown a priori, the first set of three sets of parameters to be found)
  • βk is the Weibull shape parameter of the kth subpopulation (unknown a priori, the second set of three sets of parameters to be found)
  • ηk is the Weibull scale parameter (unknown a priori, the third set of three sets of parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of groups of interval data points
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

The solution will be found by solving for a group of parameters:

(ρ1,^β1^,η1^,ρ2,^β2^,η2^,...,ρQ,^βQ^,ηQ^)

so that:

Λρ1=0,Λβ1=0,Λη1=0Λρ2=0,Λβ2=0,Λη2=0ΛρQ1=0,ΛβQ1=0,ΛηQ1=0ΛβQ=0, and ΛηQ=0

Logistic Log-Likelihood Functions and their Partials

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln(eTiμσσ(1+eTiμσ)2)Si=1Niln(1+eTiμσ)+FIi=1Niln(11+eTLiμσ11+eTRiμσ)

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the logistic shape parameter (unknown a priori, the first of two parameters to be found)
  • η is the logistic scale parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval failure data group
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

For the purposes of MLE, left censored data will be considered to be intervals with TLi=0.

The solution of the maximum log-likelihood function is found by solving for (μ^,σ^) so that Λμ=0,Λσ=0.


Λμ=1σFei=1Ni+2σFei=1NieTiμσ1+eTiμσ+1σSi=1NieTiμσ1+eTiμσFIi=1Niσ+1σFIi=1Ni(eTLiμσ1+eTLiμσ+eTRiμσ1+eTRiμσ)



Λσ=Fei=1NiTiμσ21σFei=1Ni+2σFei=1NiTiμσeTiμσ1+eTiμσ+1σSi=1NiTiμσeTiμσ1+eTiμσ1σFIi=1Ni(TLiμσeTLiμσ1+eTLiμσ+TRiμσeTRiμσ1+eTRiμσTRiμσeTRiμσTLiμσeTLiμσeTRiμσeTLiμσ)

The Loglogistic Log-Likelihood Functions and their Partials

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln(eln(Ti)μσσt(1+eln(Ti)μσ)2)Si=1Niln(1+eln(Ti)μσ)+FIi=1Niln(11+eln(TLi)μσ11+eln(TRi)μσ)

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the loglogistic shape parameter (unknown a priori, the first of two parameters to be found)
  • σ is the loglogistic scale parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval failure data groups,
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

For the purposes of MLE, left censored data will be considered to be intervals with TLi=0.

The solution of the maximum log-likelihood function is found by solving for (μ^,σ^) so that Λμ=0,Λσ=0.


Λμ=Fei=1Niσ+2σFei=1Nieln(Ti)μσ1+eln(Ti)μσ+1σSi=1Nieln(Ti)μσ1+eln(Ti)μσFIσ+1σFIi=1Ni(eln(TLi)μσ1+eln(TLi)μσ+eln(TRi)μσ1+eln(TRi)μσ)


Λσ=Fei=1Niln(Ti)μσ21σFei=1Ni+2σFei=1Niln(Ti)μσeln(Ti)μσ1+eln(Ti)μσ+1σSi=1Niln(Ti)μσeln(Ti)μσ1+eln(Ti)μσ1σFIi=1Ni(ln(TLi)μσeln(TLi)μσ1+eln(TLi)μσ+TRiμσeln(TRi)μσ1+eln(TRi)μσln(TRi)μσeln(TRi)μσln(TLi)μσeln(TLi)μσeln(TRi)μσeln(TLi)μσ)

The Gumbel Log-Likelihood Functions and their Partials

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln(eTiμσeTiμσσ)Si=1Niln(eeTiμσ)+FIi=1Niln(eeTLiμσeeTRiμσ)

or:

Λ=Fei=1Ni(TiμσeTiμσ)ln(σ)Fei=1Ni+Si=1NieTiμσ+FIi=1Niln(eeTLiμσeeTRiμσ)

where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the Gumbel shape parameter (unknown a priori, the first of two parameters to be found)
  • σ is the Gumbel scale parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval failure data groups
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • TRi is the ending of the ith interval

For the purposes of MLE, left censored data will be considered to be intervals with TLi=0.

The solution of the maximum log-likelihood function is found by solving for (μ^,σ^) so that:

Λμ=0,Λσ=0.


Λμ=1σFei=1Ni+1σFei=1NieTiμσ1σSi=1NieTiμσ+1σFIi=1Ni(eTLiμσeTLiμσeTRiμσeTRiμσeeTLiμσeeTRiμσ)


Λσ=Fei=1NiTiμσ21σFei=1+1σFei=1NiTiμσeTiμσ1σSi=1NiTiμσeTiμσ+1σFIi=1Ni(TLiμσeTLiμσeTLiμσTRiμσeTRiμσeTRiμσeeTLiμσeeTRiμσ)

The Gamma Log-Likelihood Functions and their Partials

This log-likelihood function is composed of three summation portions:

ln(L)=Λ=Fei=1Niln(ek(ln(Ti)μ)eeln(Ti)μTiΓ(k))+Si=1Niln(1Γ(1k;eln(Ti)μ)))+FIi=1Niln(Γ1(k;eln(TRi)μ)Γ1(k;eln(TLi)μ))

or:

Λ=Fei=1Niln(Ti)Fei=1Niln(Γ(k))+kFei=1Ni(ln(Ti)μ)Fei=1Nieln(Ti)μ+Si=1Niln(1Γ1(k;eln(Ti)μ))+FIi=1Niln(Γ1(k;eln(TRi)μ))Γ1(k;eln(TLi)μ)))


where:

  • Fe is the number of groups of times-to-failure data points
  • Ni is the number of times-to-failure in the ith time-to-failure data group
  • μ is the gamma shape parameter (unknown a priori, the first of two parameters to be found)
  • k is the gamma scale parameter (unknown a priori, the second of two parameters to be found)
  • Ti is the time of the ith group of time-to-failure data
  • S is the number of groups of suspension data points
  • Ni is the number of suspensions in ith group of suspension data points
  • Ti is the time of the ith suspension data group
  • FI is the number of interval failure data groups
  • Ni is the number of intervals in ith group of data intervals
  • TLi is the beginning of the ith interval
  • and TRi is the ending of the ith interval

For the purposes of MLE, left censored data will be considered to be intervals with TLi=0.

The solution of the maximum log-likelihood function is found by solving for (μ^,σ^) so that Λμ=0,Λk=0.


Λμ=kFei=1Ni+Fei=1Nieln(Ti)μ+1Γ(k)Si=1Niek(ln(Ti)μ)eln(Ti)μ))1Γ1(k;eln(Ti)μ)+1Γ(k)FIi=1Ni{ekeeln(TRi)μeeln(TRi)μΓ1(k;eln(TRi)μ)Γ1(k;eln(TLi)μ)ekeln(TLi)μeeln(TLi)μΓ1(k;eln(TRi)μ)Γ1(k;eln(TLi)μ)}



Λk=Fei=1Ni(ln(Ti)μ)Γ(k)Fei=1NiΓ(k)Si=1NiΓ1(k;eln(Ti)μ)k1Γ1(k;eln(Ti)μ)+FIi=1Ni(Γ1(k;eln(TLi)μ)kΓ1(k;eln(TRi)μ)kΓ1(k;eln(TRi)μ)Γ1(k;eln(TLi)μ)))