|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| ==Simple Actuarial Method==
| | #REDIRECT [[Non-Parametric Life Data Analysis]] |
| The simple actuarial method is an easy-to-use form of nonparametric data analysis that can be used for multiply censored data that are arranged in intervals. This method is based on calculating the number of failures in a time interval, <math>{{r}_{j}},</math> versus the number of operating units in that time period, <math>{{n}_{j}}</math> . The equation for the reliability estimator for the standard actuarial method is given by:
| |
| | |
| ::<math>\widehat{R}({{t}_{i}})=\underset{j=1}{\overset{i}{\mathop \prod }}\,\left( 1-\frac{{{r}_{j}}}{{{n}_{j}}} \right),\text{ }i=1,...,m</math>
| |
| | |
| where:
| |
| | |
| ::<math>\begin{align}
| |
| & m= \text{the total number of intervals} \\
| |
| & n= \text{the total number of units}
| |
| \end{align}</math>
| |
| | |
| The variable <math>{{n}_{i}}</math> is defined by:
| |
| | |
| ::<math>{{n}_{i}}=n-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{s}_{j}}-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{r}_{j,}}\text{ }i=1,...,m</math>
| |
| | |
| where:
| |
| | |
| ::<math>\begin{align}
| |
| & {{r}_{j}}= \text{the number of failures in interval }j \\
| |
| & {{s}_{j}}= \text{the number of suspensions in interval }j
| |
| \end{align}</math>
| |
| | |
| | |
| '''Example 2:'''
| |
| {{Example: Simple-Actuarial Example}}
| |