|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ===Non-parametric Confidence Bounds===
| | #REDIRECT [[Non-Parametric Life Data Analysis]] |
| Confidence bounds for nonparametric reliability estimates can be calculated using a method similar to that of parametric confidence bounds. The difficulty in dealing with nonparametric data lies in the estimation of the variance. To estimate the variance for nonparametric data, Weibull++ uses Greenwood's formula [27]:
| |
| | |
| ::<math>\widehat{Var}(\widehat{R}({{t}_{i}}))={{\left[ \widehat{R}({{t}_{i}}) \right]}^{2}}\cdot \underset{j=1}{\overset{i}{\mathop \sum }}\,\frac{\tfrac{{{r}_{j}}}{{{n}_{j}}}}{{{n}_{j}}\cdot \left( 1-\tfrac{{{r}_{j}}}{{{n}_{j}}} \right)}</math>
| |
| | |
| :where:
| |
| | |
| ::<math>\begin{align}
| |
| & m= & \text{ the total number of intervals} \\
| |
| & n= & \text{ the total number of units}
| |
| \end{align}</math>
| |
| | |
| The variable <math>{{n}_{i}}</math> is defined by:
| |
| | |
| ::<math>{{n}_{i}}=n-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{s}_{j}}-\underset{j=0}{\overset{i-1}{\mathop \sum }}\,{{r}_{j,}}\text{ }i=1,...,m</math>
| |
| | |
| :where:
| |
| | |
| ::<math>\begin{align}
| |
| & {{r}_{j}}= & \text{the number of failures in interval }j \\
| |
| & {{s}_{j}}= & \text{the number of suspensions in interval }j
| |
| \end{align}</math>
| |
| | |
| Once the variance has been calculated, the standard error can be determined by taking the square root of the variance:
| |
| | |
| ::<math>{{\widehat{se}}_{\widehat{R}}}=\sqrt{\widehat{Var}(\widehat{R}({{t}_{i}}))}</math>
| |
| | |
| This information can then be applied to determine the confidence bounds:
| |
| | |
| ::<math>\left[ LC{{B}_{\widehat{R}}},\text{ }UC{{B}_{\widehat{R}}} \right]=\left[ \frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})\cdot w},\text{ }\frac{\widehat{R}}{\widehat{R}+(1-\widehat{R})/w} \right]</math>
| |
| | |
| :where:
| |
| | |
| ::<math>w={{e}^{{{z}_{\alpha }}\cdot \tfrac{{{\widehat{se}}_{\widehat{R}}}}{\left[ \widehat{R}\cdot (1-\widehat{R}) \right]}}}</math>
| |
| | |
| and <math>\alpha </math> is the desired confidence level for the 1-sided confidence bounds.
| |
| | |
| ==== Example 12====
| |
| Determine the 1-sided confidence bounds for the reliability estimates in Example 11, with a 95% confidence level.
| |
| ===== Solution to Example 12=====
| |
| Once again, this type of problem is most readily solved by constructing a table similar to the following:
| |
| | |
| [[Image:lda22.1.gif|thumb|center|600px| ]]
| |
| | |
| The following plot illustrates these results graphically:
| |
| | |
| [[Image:lda22.2.gif|thumb|center|400px| ]]
| |
| <br>
| |