|
|
(12 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BNon-Parametric_RDA_Data]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]]
| |
| |}
| |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| | valign="middle" |{{Font|Non-Parametric RDA Data|11|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" |
| |
| Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31]
| |
| | |
| :• Evaluate whether the population repair (or cost) rate increases or decreases with age (this is useful for product retirement and burn-in decisions).
| |
| :• Estimate the average number or cost of repairs per unit during warranty or some time period.
| |
| :• Compare two or more sets of data from different designs, production periods, maintenance policies, environments, operating conditions, etc.
| |
| :• Predict future numbers and costs of repairs, such as, the next month, quarter, or year.
| |
| :• Reveal unexpected information and insight.
| |
| |-
| |
| | valign="middle" | [http://reliawiki.com/index.php/Template:Recurrent_events_data_analysis#Non-Parameteric_Recurrence_Data_Analysis Get More Details...]
| |
| |-
| |
| | valign="middle" | [http://reliawiki.com/index.php/Template:Non-parametric_LDA_Examples See Examples...]
| |
| |}
| |
| | |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Non-Parametric_RDA_Data&action=edit]]
| |