|
|
(48 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_3P-Weibull]] |
| {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| ! scope="col" |
| |
| {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
| |
| |-
| |
| | align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" |
| |
| The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 3-parameter Weibull includes a location parameter gamma. It's pdf is given by:
| |
| |-
| |
| | align="center" valign="middle" |
| |
| <br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T-\gamma}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T-gamma}{\eta }}\right) ^{\beta }} \,\!</math>
| |
| <br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life. Eta represents the time by which 63.2% of the units fail.<br>
| |
| <br><math> \beta= </math> shape parameter (or slope).
| |
| |-
| |
| | align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...]
| |
| |-
| |
| | align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_2P See Examples...]
| |
| |}
| |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_3P-Weibull&action=edit]]
| |