|
|
(39 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_1P-Weibull]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]]
| |
| |}
| |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0"
| |
| |-
| |
| | valign="middle" align="left" |
| |
| ==== The One-Parameter Weibull Distribution ====
| |
| | |
| | |
| The one-parameter Weibull distribution is a special case of the two parameter Weibull that assumes that shape parameter is known constant,
| |
| | |
| <math>\beta=C \,\!</math>
| |
| | |
| or
| |
| | |
| <math> R(t)=e^{-\left( {\frac{t}{ \eta }}\right) ^{C}} \,\!</math>
| |
| | |
| In this formulation we assume that the shape parameter is known ''a priori'' from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.
| |
| | |
| '''''More...'''''
| |
| |-
| |
| | valign="middle" align="left" | See also [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
| |
| |-
| |
| | valign="middle" align="left" | See also [http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull Analysis Example]
| |
| |}
| |
| | |
| <br>
| |
| | |
| {{Template:Sidebarlink|http://www.reliawiki.com/index.php/The_Weibull_Distribution
| |
| |b|c|http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull|}}
| |
| | |
| [[Image:Docedit.png|right|20px|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]]
| |