|
|
(118 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_1P-Weibull]] |
| {{WeibullSideBar|Weibull++ Standard Folio <br> Weibull One Parameter|
| |
| | |
| <math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
| |
| }}
| |
| | |
| | |
| * With the one-parameter Weibull, we assume that the shape parameter is Constant and known ''a priori''. The advantage of doing this is that data sets with few or no failures can be analyzed.
| |
| * Only the scale parameter (eta) is estimated from data. You will be prompted to specify the shape parameter value.
| |
| * See [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
| |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] | |