|
|
(129 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_1P-Weibull]] |
| | |
| {{WeibullSideBar|Weibull++|Standard Folio Weibull One Parameter|
| |
| <math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
| |
| |DD|EE}}
| |
| | |
| The one-parameter Weibull ''pdf'' is obtained by again setting
| |
| <math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:
| |
| | |
| ::<math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
| |
| | |
| where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.
| |
| | |
| Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter <math>\beta \,\!</math> is known ''a priori'' from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.
| |
| | |
| | |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] | |