|
|
(22 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/Weibull%2B%2BStandard_Folio_Data_1P-Exponential]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]]
| |
| |}
| |
| | |
| {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| | valign="middle" |{{Font|Standard Folio Data 1P-Exponential|11|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" |
| |
| ===The One-Parameter Exponential Distribution===
| |
| The one-parameter exponential <math>pdf</math> is obtained by setting <math>\gamma =0</math>, and is given by:
| |
| | |
| <math> \begin{align}f(t)= & \lambda {{e}^{-\lambda t}}=\frac{1}{m}{{e}^{-\tfrac{1}{m}t}},
| |
| & t\ge 0, \lambda >0,m>0
| |
| \end{align}
| |
| </math>
| |
| | |
| where:
| |
| | |
| This distribution requires the knowledge of only one parameter, <math>\lambda </math>, for its application. Some of the characteristics of the one-parameter exponential distribution are [[Appendix: Weibull References|
| |
| [19]]]:
| |
| #The location parameter, <math>\gamma </math>, is zero. | |
| #The scale parameter is <math>\tfrac{1}{\lambda }=m</math>.
| |
| #As <math>\lambda </math> is decreased in value, the distribution is stretched out to the right, and as <math>\lambda </math> is increased, the distribution is pushed toward the origin.
| |
| #This distribution has no shape parameter as it has only one shape, i.e. the exponential, and the only parameter it has is the failure rate, <math>\lambda </math>.
| |
| #The distribution starts at <math>t=0</math> at the level of <math>f(t=0)=\lambda </math> and decreases thereafter exponentially and monotonically as <math>t</math> increases, and is convex.
| |
| #As <math>t\to \infty </math> , <math>f(t)\to 0</math>.
| |
| #The <math>pdf</math> can be thought of as a special case of the Weibull <math>pdf</math> with <math>\gamma =0</math> and <math>\beta =1</math>.
| |
| | |
| |-
| |
| | valign="middle" | [http://www.reliawiki.com/index.php/The_Exponential_Distribution Exponential Distribution]
| |
| |-
| |
| | valign="middle" | [http://www.reliawiki.com/index.php/Template:One_parameter_exponential_distribution_example See Examples...]
| |
| |}
| |
| | |
| <br/>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Exponential&action=edit]]
| |