|
|
(15 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PowerLaw]] |
| {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| ! scope="col" |
| |
| {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
| |
| |-
| |
| | align="center" valign="middle" |{{Font|Standard Folio Data IPL-Weibull|11|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" |
| |
| <br>
| |
| The IPL-Weibull model can be derived by setting <math>\eta =L(V)</math> , yielding the following IPL-Weibull <math>pdf\ \ :</math>
| |
| | |
| <br>
| |
| ::<math>f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}}</math>
| |
| | |
| <br>
| |
| This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for <math>\beta =1.</math>
| |
| |-
| |
| | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_weibull#IPL-Weibull Get More Details...]
| |
| |-
| |
| | align="center" valign="middle" | [Link2 See Examples...]
| |
| |}
| |
| | |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_IPL-Weibull&action=edit]] | |