|
|
(10 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PowerLaw]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
| |
| |}
| |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| | valign="middle" |{{Font|Standard Folio Data IPL-Exponential|11|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" |
| |
| ==IPL-Exponential==
| |
| The IPL-exponential model can be derived by setting <math>m=L(V)</math> in Eqn. (inverse), yielding the following IPL-exponential <math>pdf</math> :
| |
| <br>
| |
| <math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
| |
| <br>
| |
| Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply <math>\lambda =K{{V}^{n}},</math> and is only a function of stress.
| |
| <br>
| |
| [[Image:ALTA8.4.gif|200px|IPL-exponential failure rate function at different stress levels.]]
| |
| |-
| |
| | valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
| |
| | |
| |}
| |
| | |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_IPL-Exponential&action=edit]]
| |