|
|
(9 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Eyring]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
| |
| |}
| |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| | valign="middle" |{{Font|Standard Folio Data Eyring-Weibull|11|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" |
| |
| The <math>pdf</math> for 2-parameter Weibull distribution is given by:
| |
| <br>
| |
| <math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math>
| |
| <br>
| |
| The scale parameter (or characteristic life) of the Weibull distribution is <math>\eta </math> . The Eyring-Weibull model <math>pdf</math> can then be obtained by setting <math>\eta =L(V)</math> in Eqn. (eyring):
| |
| <br>
| |
| <math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
| |
| <br>
| |
| or:
| |
| <br>
| |
| <math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
| |
| <br>
| |
| Substituting for <math>\eta </math> into Eqn. (Eyrpdf):
| |
| <br>
| |
| <math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math>
| |
| |-
| |
| | valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
| |
| |-
| |
| | valign="middle" | [Example:Eyring| See an example]
| |
| |}
| |
| <br>
| |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]
| |