|
|
(14 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Eyring]] |
| {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| ! scope="col" |
| |
| {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
| |
| |-
| |
| | align="center" valign="middle" |{{Font|Standard Folio Data Eyring-Exponential|11|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| |
| |-
| |
| | align="center" valign="middle" |
| |
| The <math>pdf</math> of the 1-parameter exponential distribution is given by:
| |
| | |
| <br>
| |
| <math>f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}}</math>
| |
| | |
| <br>
| |
| It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
| |
| | |
| <br>
| |
| <math>\lambda =\frac{1}{m}</math>
| |
| | |
| <br>
| |
| thus:
| |
| | |
| <br>
| |
| <math>f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}}</math>
| |
| | |
| <br>
| |
| The Eyring-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (eyring):
| |
| | |
| <br>
| |
| <math>m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
| |
| | |
| <br>
| |
| and substituting for <math>m</math> in Eqn. (pdfexpm2):
| |
| | |
| <br>
| |
| <math>f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}}</math>
| |
| | |
| |-
| |
| | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
| |
| | |
| |}
| |
| | |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Exponential&action=edit]] | |