|
|
(8 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| {{Template:NoSkin}}
| | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Arrhenius]] |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
| |
| |-
| |
| | valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
| |
| |}
| |
| {| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
| |
| |-
| |
| | valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| |
| |-
| |
| | valign="middle" |
| |
| The <math>pdf</math> of the 1-parameter exponential distribution is given by:
| |
| | |
| <br>
| |
| <math>f(t)=\lambda {{e}^{-\lambda t}}</math>
| |
| <br>
| |
| It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
| |
| <br>
| |
| <math>\lambda =\frac{1}{m}</math>
| |
| <br>
| |
| thus:
| |
| <br>
| |
| <math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
| |
| <br>
| |
| The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius).
| |
| <br>
| |
| Therefore:
| |
| <br>
| |
| <math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
| |
| <br>
| |
| Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or:
| |
| <br>
| |
| <math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
| |
| |-
| |
| | valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
| |
| |}
| |
| | |
| <br>
| |
| | |
| | |
| [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Arrhenius-Exponential&action=edit]]
| |
| | |
| [[Category:Needs example]]
| |