Crow-AMSAA (NHPP): Difference between revisions
No edit summary |
No edit summary |
||
Line 101: | Line 101: | ||
::<math>m(T)=\frac{1}{\lambda \beta {{T}^{\beta -1}}}\,\!</math> | ::<math>m(T)=\frac{1}{\lambda \beta {{T}^{\beta -1}}}\,\!</math> | ||
===Note About Applicability=== | ===Note About Applicability=== |
Revision as of 23:18, 17 January 2014
Dr. Larry H. Crow [17] noted that the Duane Model could be stochastically represented as a Weibull process, allowing for statistical procedures to be used in the application of this model in reliability growth. This statistical extension became what is known as the Crow-AMSAA (NHPP) model. This method was first developed at the U.S. Army Materiel Systems Analysis Activity (AMSAA). It is frequently used on systems when usage is measured on a continuous scale. It can also be applied for the analysis of one shot items when there is high reliability and a large number of trials.
Test programs are generally conducted on a phase by phase basis. The Crow-AMSAA model is designed for tracking the reliability within a test phase and not across test phases. A development testing program may consist of several separate test phases. If corrective actions are introduced during a particular test phase, then this type of testing and the associated data are appropriate for analysis by the Crow-AMSAA model. The model analyzes the reliability growth progress within each test phase and can aid in determining the following:
- Reliability of the configuration currently on test
- Reliability of the configuration on test at the end of the test phase
- Expected reliability if the test time for the phase is extended
- Growth rate
- Confidence intervals
- Applicable goodness-of-fit tests
Background
The reliability growth pattern for the Crow-AMSAA model is exactly the same pattern as for the Duane postulate, that is, the cumulative number of failures is linear when plotted on ln-ln scale. Unlike the Duane postulate, the Crow-AMSAA model is statistically based. Under the Duane postulate, the failure rate is linear on ln-ln scale. However, for the Crow-AMSAA model statistical structure, the failure intensity of the underlying non-homogeneous Poisson process (NHPP) is linear when plotted on ln-ln scale.
Let
The Crow-AMSAA model assumes that
Therefore, if
In the special case of exponential failure times, there is no growth and the failure intensity,
In order for the plot to be linear when plotted on ln-ln scale under the general reliability growth case, the following must hold true where the expected number of failures is equal to:
To put a statistical structure on the reliability growth process, consider again the special case of no growth. In this case the number of failures,
The Crow-AMSAA model generalizes this no growth case to allow for reliability growth due to corrective actions. This generalization keeps the Poisson distribution for the number of failures but allows for the expected number of failures,
This is the general growth situation, and the number of failures,
The cumulative
As mentioned above, the local pattern for reliability growth within a test phase is the same as the growth pattern observed by Duane. The Duane
And the Duane cumulative failure rate,
Thus a relationship between Crow-AMSAA parameters and Duane parameters can be developed, such that:
Note that these relationships are not absolute. They change according to how the parameters (slopes, intercepts, etc.) are defined when the analysis of the data is performed. For the exponential case,
The total number of failures,
The number of failures occurring in the interval from
The number of failures in any interval is statistically independent of the number of failures in any interval that does not overlap the first interval. At time
Note About Applicability
The Duane and Crow-AMSAA models are the most frequently used reliability growth models. Their relationship comes from the fact that both make use of the underlying observed linear relationship between the logarithm of cumulative MTBF and cumulative test time. However, the Duane model does not provide a capability to test whether the change in MTBF observed over time is significantly different from what might be seen due to random error between phases. The Crow-AMSAA model allows for such assessments. Also, the Crow-AMSAA allows for development of hypothesis testing procedures to determine growth presence in the data (where
Parameter Estimation
Maximum Likelihood Estimators
The probability density function (pdf) of the
The likelihood function is:
where
Taking the natural log on both sides:
And differentiating with respect to
Set equal to zero and solve for
Now differentiate with respect to
Set equal to zero and solve for
Biasing and Unbiasing of Beta
The equation above returns the biased estimate of
For failure terminated data (meaning that the test ends after a specified test time):
Crow-AMSAA Model Example
A prototype of a system was tested with design changes incorporated during the test. The following table presents the data collected over the entire test. Find the Crow-AMSAA parameters and the intensity function using maximum likelihood estimators.
Row | Time to Event (hr) | |
---|---|---|
1 | 2.7 | 0.99325 |
2 | 10.3 | 2.33214 |
3 | 12.5 | 2.52573 |
4 | 30.6 | 3.42100 |
5 | 57.0 | 4.04305 |
6 | 61.3 | 4.11578 |
7 | 80.0 | 4.38203 |
8 | 109.5 | 4.69592 |
9 | 125.0 | 4.82831 |
10 | 128.6 | 4.85671 |
11 | 143.8 | 4.96842 |
12 | 167.9 | 5.12337 |
13 | 229.2 | 5.43459 |
14 | 296.7 | 5.69272 |
15 | 320.6 | 5.77019 |
16 | 328.2 | 5.79362 |
17 | 366.2 | 5.90318 |
18 | 396.7 | 5.98318 |
19 | 421.1 | 6.04287 |
20 | 438.2 | 6.08268 |
21 | 501.2 | 6.21701 |
22 | 620.0 | 6.42972 |
Solution
For the failure terminated test,
where:
Then:
And for
Therefore,
The next figure shows the plot of the failure rate. If no further changes are made, the estimated MTBF is
Confidence Bounds
The RGA software provides two methods to estimate the confidence bounds for the Crow Extended model when applied to developmental testing data. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. See the Crow-AMSAA Confidence Bounds chapter for details on how the confidence bounds are calculated.
Confidence Bounds Example
Example - Confidence Bounds on Failure Intensity
Using the values of
Solution
Fisher Matrix Bounds
The partial derivatives for the Fisher Matrix confidence bounds are:
The Fisher Matrix then becomes:
For
Therefore, the variances become:
The cumulative and instantaneous failure intensities at
So, at the 90% confidence level and for
The confidence bounds for the instantaneous failure intensity are:
The following figures display plots of the Fisher Matrix confidence bounds for the cumulative and instantaneous failure intensity, respectively.
Crow Bounds
Given that the data is failure terminated, the Crow confidence bounds for the cumulative failure intensity at the 90% confidence level and for
The Crow confidence bounds for the instantaneous failure intensity at the 90% confidence level and for
The following figures display plots of the Crow confidence bounds for the cumulative and instantaneous failure intensity, respectively.
Example - Confidence Bounds on MTBF
Calculate the confidence bounds on the cumulative and instantaneous MTBF for the data from the example given above.
Solution
Fisher Matrix Bounds
From the previous example:
And for
Therefore, the variances become:
So, at 90% confidence level and
The following two figures show plots of the Fisher Matrix confidence bounds for the cumulative and instantaneous MTBFs.
Crow Bounds
The Crow confidence bounds for the cumulative MTBF and the instantaneous MTBF at the 90% confidence level and for
The figures below show plots of the Crow confidence bounds for the cumulative and instantaneous MTBF.
Confidence bounds can also be obtained on the parameters
and:
For Crow confidence bounds:
and:
Grouped Data
For analyzing grouped data, we follow the same logic described previously for the Duane model. If the
According to Crow [9], the likelihood function for the grouped data case, (where
And the MLE of
where
The estimate of
See the Crow-AMSAA Confidence Bounds for details on how confidence bounds for grouped data are calculated.
Grouped Data Example
Grouped Data Example 1
Consider the grouped failure times data given in the following table. Solve for the Crow-AMSAA parameters using MLE.
Run Number | Cumulative Failures | End Time(hours) | ||||
---|---|---|---|---|---|---|
1 | 2 | 200 | 5.298 | 28.072 | 0.693 | 3.673 |
2 | 3 | 400 | 5.991 | 35.898 | 1.099 | 6.582 |
3 | 4 | 600 | 6.397 | 40.921 | 1.386 | 8.868 |
4 | 11 | 3000 | 8.006 | 64.102 | 2.398 | 19.198 |
Sum = | 25.693 | 168.992 | 5.576 | 38.321 |
Solution
Using RGA, the value of
Therefore, the intensity function becomes:
Grouped Data Example 2
A new helicopter system is under development. System failure data has been collected on five helicopters during the final test phase. The actual failure times cannot be determined since the failures are not discovered until after the helicopters are brought into the maintenance area. However, total flying hours are known when the helicopters are brought in for service, and every 2 weeks each helicopter undergoes a thorough inspection to uncover any failures that may have occurred since the last inspection. Therefore, the cumulative total number of flight hours and the cumulative total number of failures for the 5 helicopters are known for each 2-week period. The total number of flight hours from the test phase is 500, which was accrued over a period of 12 weeks (six 2-week intervals). For each 2-week interval, the total number of flight hours and total number of failures for the 5 helicopters were recorded. The grouped data set is displayed in the following table.
Interval | Interval Length | Failures in Interval |
---|---|---|
1 | 0 - 62 | 12 |
2 | 62 -100 | 6 |
3 | 100 - 187 | 15 |
4 | 187 - 210 | 3 |
5 | 210 - 350 | 18 |
6 | 350 - 500 | 16 |
Do the following:
- Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimation.
- Calculate the confidence bounds on the cumulative and instantaneous MTBF using the Fisher Matrix and Crow methods.
Solution
- Using RGA, the value of
, must be solved numerically. Once has been estimated then the value of can be determined. The parameter values are displayed below: and at the 90% confidence level by: and at the 90% confidence level, as: - The Fisher Matrix confidence bounds for the cumulative MTBF and the instantaneous MTBF at the 90% 2-sided confidence level and for
hour are:The Crow confidence bounds for the cumulative and instantaneous MTBF at the 90% 2-sided confidence level and for
hours are:and:
The next two figures show plots of the Crow confidence bounds for the cumulative and instantaneous MTBF.
Goodness-of-Fit Tests
Missing Data
Most of the reliability growth models used for estimating and tracking reliability growth based on test data assume that the data set represents all actual system failure times consistent with a uniform definition of failure (complete data). In practice, this may not always be the case and may result in too few or too many failures being reported over some interval of test time. This may result in distorted estimates of the growth rate and current system reliability. This section discusses a practical reliability growth estimation and analysis procedure based on the assumption that anomalies may exist within the data over some interval of the test period but the remaining failure data follows the Crow-AMSAA reliability growth model. In particular, it is assumed that the beginning and ending points in which the anomalies lie are generated independently of the underlying reliability growth process. The approach for estimating the parameters of the growth model with problem data over some interval of time is basically to not use this failure information. The analysis retains the contribution of the interval to the total test time, but no assumptions are made regarding the actual number of failures over the interval. This is often referred to as gap analysis.
Consider the case where a system is tested for time
Let
In general, these equations cannot be solved explicitly for
Example - Gap Analysis
Consider a system under development that was subjected to a reliability growth test for
.5 | .6 | 10.7 | 16.6 | 18.3 | 19.2 | 19.5 | 25.3 |
39.2 | 39.4 | 43.2 | 44.8 | 47.4 | 65.7 | 88.1 | 97.2 |
104.9 | 105.1 | 120.8 | 195.7 | 217.1 | 219 | 257.5 | 260.4 |
281.3 | 283.7 | 289.8 | 306.6 | 328.6 | 357.0 | 371.7 | 374.7 |
393.2 | 403.2 | 466.5 | 500.9 | 501.5 | 518.4 | 520.7 | 522.7 |
524.6 | 526.9 | 527.8 | 533.6 | 536.5 | 542.6 | 543.2 | 545.0 |
547.4 | 554.0 | 554.1 | 554.2 | 554.8 | 556.5 | 570.6 | 571.4 |
574.9 | 576.8 | 578.8 | 583.4 | 584.9 | 590.6 | 596.1 | 599.1 |
600.1 | 602.5 | 613.9 | 616.0 | 616.2 | 617.1 | 621.4 | 622.6 |
624.7 | 628.8 | 642.4 | 684.8 | 731.9 | 735.1 | 753.6 | 792.5 |
803.7 | 805.4 | 832.5 | 836.2 | 873.2 | 975.1 |
The observed and cumulative number of failures for each month are:
Month | Time Period | Observed Failure Times | Cumulative Failure Times |
---|---|---|---|
1 | 0-125 | 19 | 19 |
2 | 125-375 | 13 | 32 |
3 | 375-500 | 3 | 35 |
4 | 500-625 | 38 | 73 |
5 | 625-750 | 5 | 78 |
6 | 750-875 | 7 | 85 |
7 | 875-1000 | 1 | 86 |
- Determine the maximum likelihood estimators for the Crow-AMSAA model.
- Evaluate the goodness-of-fit for the model.
- Consider
as the gap interval and determine the maximum likelihood estimates of and .
Solution
- For the time terminated test:
- The Cramér-von Mises goodness-of-fit test for this data set yields:
versus with the fitted line , where and are the maximum likelihood estimates.Observing the data during the fourth month (between 500 and 625 hours), 38 failures were reported. This number is very high in comparison to the failures reported in the other months. A quick investigation found that a number of new data collectors were assigned to the project during this month. It was also discovered that extensive design changes were made during this period, which involved the removal of a large number of parts. It is possible that these removals, which were not failures, were incorrectly reported as failed parts. Based on knowledge of the system and the test program, it was clear that such a large number of actual system failures was extremely unlikely. The consensus was that this anomaly was due to the failure reporting. For this analysis, it was decided that the actual number of failures over this month is assumed to be unknown, but consistent with the remaining data and the Crow-AMSAA reliability growth model.
- Considering the problem interval
as the gap interval, we will use the data over the interval and over the interval The equations for analyzing missing data are the appropriate equations to estimate and because the failure times are known. In this case and . The maximum likelihood estimates of and are:
Crow Discrete Reliability Growth Model
The Crow-AMSAA model can be adapted for the analysis of success/failure data (also called discrete or attribute data). Suppose system development is represented by
And the cumulative number of failures through configuration
The expected value of
Denote
Applying the
By this method of inductive reasoning, a generalized equation for the failure probability on a configuration basis,
For the special case where
In this equation,
The equation for the reliability for the
Maximum Likelihood Estimators for Discrete Model
This section describes procedures for estimating the parameters of the Crow-AMSAA model for success/failure data. An example is presented illustrating these concepts. The estimation procedures provide maximum likelihood estimates (MLEs) for the model's two parameters,
And the probability of success (reliability) for each configuration
The likelihood function is:
Taking the natural log on both sides yields:
Taking the derivative with respect to
- where:
Discrete Model Example
A one-shot system underwent reliability growth development testing for a total of 68 trials. Delayed corrective actions were incorporated after the 14th, 33rd and 48th trials. From trial 49 to trial 68, the configuration was not changed.
- Configuration 1 experienced 5 failures,
- Configuration 2 experienced 3 failures,
- Configuration 3 experienced 4 failures and
- Configuration 4 experienced 4 failures.
Do the following:
- Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimation.
- Estimate the unreliability and reliability by configuration.
Solution
- The parameter estimates for the Crow-AMSAA model using the parameter estimation for discrete data methodology yields
and . - The following table displays the results for probability of failure and reliability, and these results are displayed in the next two plots.
Estimated Failure Probability and Reliability by Configuration Configuration( )Estimated Failure Probability Estimated Reliability 1 0.333 0.667 2 0.234 0.766 3 0.206 0.794 4 0.190 0.810
Discrete Model for Mixed Data
In the RGA software, the Discrete Data > Mixed Data option gives a data sheet that can have input data that is either a configuration in groups or individual trial by trial, or a mixed combination of individual trials and configurations of more than one trial. The calculations use the same mathematical methods described in the Grouped Data section.
Mixed Data Example
The table below shows the number of failures of each interval of trials and the cumulative number of trials in each interval for a reliability growth test. For example, the first row indicates that for an interval of 14 trials, 5 failures occurred.
Failures in Interval | Cumulative Trials |
---|---|
5 | 14 |
3 | 33 |
4 | 48 |
0 | 52 |
1 | 53 |
0 | 57 |
1 | 58 |
0 | 62 |
1 | 63 |
0 | 67 |
1 | 68 |
Using the RGA software, the parameters of the Crow-AMSAA model are estimated as follows:
and:
As we have seen, the Crow-AMSAA instantaneous failure intensity,
Using the parameter estimates, we can calculate the instantaneous unreliability at the end of the test, or
This result that can be obtained from the Quick Calculation Pad (QCP), for
The instantaneous reliability can then be calculated as:
Mixed Data Confidence Bounds
Bounds on Average Failure Probability for Mixed Data
The process to calculate the average unreliability confidence bounds for mixed data is as follows:
- 1) Calculate the average failure probability
. - 2) There will exist a
between and such that the instantaneous unreliability at equals the average unreliability . The confidence intervals for the instantaneous unreliability at are the confidence intervals for the average unreliability .
Bounds on Average Reliability for Mixed Data
The process to calculate the average reliability confidence bounds for mixed data is as follows:
- 1) Calculate confidence bounds for average unreliability
as described above. - 2) The confidence bounds for reliability are 1 minus these confidence bounds for average unreliability.
Change of Slope
The assumption of the Crow-AMSAA (NHPP) model is that the failure intensity is monotonically increasing, decreasing or remaining constant over time. However, there might be cases in which the system design or the operational environment experiences major changes during the observation period and, therefore, a single model will not be appropriate to describe the failure behavior for the entire timeline. RGA incorporates a methodology that can be applied to scenarios where a major change occurs during a reliability growth test. The test data can be broken into two segments with a separate Crow-AMSAA (NHPP) model applied to each segment.
Consider the data in the following plot from a reliability growth test.
As discussed above, the cumulative number of failures vs. the cumulative time should be linear on logarithmic scales. The next figure shows the data plotted on logarithmic scales.
One can easily recognize that the failure behavior is not constant throughout the duration of the test. Just by observing the data, it can be asserted that a major change occurred at around 140 hours that resulted in a change in the rate of failures. Therefore, using a single model to analyze this data set likely will not be appropriate.
The Change of Slope methodology proposes to split the data into two segments and apply a Crow-AMSAA (NHPP) model to each segment. The time of change that will be used to split the data into the two segments (it will be referred to as
Model for First Segment (Data up to T1)
The data up to the point of the change that occurs at
and
where:
is the time when the change occurs is the number of failures observed up to time is the time at which each corresponding failure was observed
The equation for
or
Model for Second Segment (Data after T1)
The Crow-AMSAA (NHPP) model will be used again to analyze the data after
and:
where:
is the number of failures that were observed after is the total number of failures observed throughout the test is the end time of the test. The test can either be failure terminated or time terminated
Example - Multiple MLE
The following table gives the failure times obtained from a reliability growth test of a newly designed system. The test has a duration of 660 hours.
First, apply a single Crow-AMSAA (NHPP) model to all of the data. The following plot shows the expected failures obtained from the model (the line) along with the observed failures (the points).
The plot shows that the model does not seem to accurately track the data. This is confirmed by performing the Cramér-von Mises goodness-of-fit test, which checks the hypothesis that the data follows a non-homogeneous Poisson process with a power law failure intensity. The model fails the goodness-of-fit test because the test statistic (0.3309) is higher than the critical value (0.1729) at the 0.1 significance level. The next figure shows a customized report that displays both the calculated parameters and the statistical test results.
Through further investigation, it is discovered that a significant design change occurred at 400 hours of test time. It is suspected that this modification is responsible for the change in the failure behavior.
In RGA, you have the option to perform a standard Crow-AMSAA (NHPP) analysis, or perform a Change of Slope analysis where you specify a specific breakpoint, as shown in the following figure. RGA actually creates a grouped data set where the data in Segment 1 is included and defined by a single interval to calculate the Segment 2 parameters. However, these results are equivalent to the parameters estimated using the equations presented here.
Therefore, the Change of Slope methodology is applied to break the data into two segments for analysis. The first segment is set from 0 to 400 hours and the second segment is from 401 to 660 hours (which is the end time of the test). The Crow-AMSAA (NHPP) parameters for the first segment (0-400 hours) are:
and
The Crow-AMSAA (NHPP) parameters for the second segment (401-660 hours) are:
The following figure shows a plot of the two-segment analysis along with the observed data. It is obvious that the Change of Slope method tracks the data more accurately.
This can also be verified by performing a chi-squared goodness-of-fit test. The chi-squared statistic is 1.2956, which is lower than the critical value of 12.017 at the 0.1 significance level; therefore, the analysis passes the test. The next figure shows a customized report that displays both the calculated parameters and the statistical test results.
When you have a model that fits the data, it can be used to make accurate predictions and calculations. Metrics such as the demonstrated MTBF at the end of the test or the expected number of failures at later times can be calculated. For example, the following plot shows the instantaneous MTBF vs. time, together with the two-sided 90% confidence bounds. Note that confidence bounds are available for the second segment only. For times up to 400 hours, the parameters of the first segment were used to calculate the MTBF, while the parameters of the second segment were used for times after 400 hours. Also note that the number of failures at the end of segment 1 is not assumed to be equal to the number of failures at the start of segment 2. This can result in a visible jump in the plot, as in this example.
The next figure shows the use of the Quick Calculation Pad (QCP) in the RGA software to calculate the Demonstrated MTBF at the end of the test (instantaneous MTBF at time = 660), together with the two-sided 90% confidence bounds. All the calculations were based on the parameters of the second segment.
More Examples
Estimating the Number of Failures if Testing Continues
Six systems were subjected to a reliability growth test and a total of 81 failures were observed. The following table presents the start and end times, along with the times-to-failure for each system. Do the following:
- 1) Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimation.
- 2) How many additional failures would be generated if testing continues until 3,000 hours?
System | 1 | 2 | 3 | 4 | 5 | 6 |
Start Time | 0 | 0 | 0 | 0 | 0 | 0 |
End Time | 504 | 541 | 454 | 474 | 436 | 500 |
Times-to-Failure | 21 | 83 | 26 | 36 | 23 | 7 |
29 | 83 | 26 | 306 | 46 | 13 | |
43 | 83 | 57 | 306 | 127 | 13 | |
43 | 169 | 64 | 334 | 166 | 31 | |
43 | 213 | 169 | 354 | 169 | 31 | |
66 | 299 | 213 | 395 | 213 | 82 | |
115 | 375 | 231 | 403 | 213 | 109 | |
159 | 431 | 231 | 448 | 255 | 137 | |
199 | 231 | 456 | 369 | 166 | ||
202 | 231 | 461 | 374 | 200 | ||
222 | 304 | 380 | 210 | |||
248 | 383 | 415 | 220 | |||
248 | 422 | |||||
255 | 437 | |||||
286 | 469 | |||||
286 | 469 | |||||
304 | ||||||
320 | ||||||
348 | ||||||
364 | ||||||
404 | ||||||
410 | ||||||
429 |
Solution
- 1) The next figure shows the parameters estimated using RGA.
- 2) The number of failures can be estimated using the Quick Calculation Pad, as shown next. The estimated number of failures at 3,000 hours is equal to 83.2451 and 81 failures were observed during testing. Therefore, the number of additional failures generated if testing continues until 3,000 hours is equal to
.
Determining Whether a Design Meets the MTBF Goal
A prototype of a system was tested at the end of one of its design stages. The test was run for a total of 300 hours and 27 failures were observed. The table below shows the collected data set. The prototype has a design specification of an MTBF equal to 10 hours with a 90% confidence level at 300 hours. Do the following:
- 1) Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimation.
- 2) Does the prototype meet the specified goal?
2.6 | 56.5 | 98.1 | 190.7 |
16.5 | 63.1 | 101.1 | 193 |
16.5 | 70.6 | 132 | 198.7 |
17 | 73 | 142.2 | 251.9 |
21.4 | 77.7 | 147.7 | 282.5 |
29.1 | 93.9 | 149 | 286.1 |
33.3 | 95.5 | 167.2 |
Solution
- 1) The next figure shows the parameters estimated using RGA.
- 2) The instantaneous MTBF with one-sided 90% confidence bounds can be calculated using the Quick Calculation Pad (QCP), as shown next. From the QCP, it is estimated that the lower limit on the MTBF at 300 hours with a 90% confidence level is equal to 10.8170 hours. Therefore, the prototype has met the specified goal.
Analyzing Mixed Data for a One-Shot System
A one-shot system underwent reliability growth development for a total of 50 trials. The test was performed as a combination of configuration in groups and individual trial by trial. The table below shows the data set obtained from the test. The first column specifies the number of failures that occurred in each interval, and the second column shows the cumulative number of trials in that interval. Do the following:
- 1) Estimate the parameters of the Crow-AMSAA model using maximum likelihood estimators.
- 2) What are the instantaneous reliability and the 2-sided 90% confidence bounds at the end of the test?
- 3) Plot the cumulative reliability with 2-sided 90% confidence bounds.
- 4) If the test was continued for another 25 trials what would the expected number of additional failures be?
Failures in Interval | Cumulative Trials | Failures in Interval | Cumulative Trials |
---|---|---|---|
3 | 4 | 1 | 25 |
0 | 5 | 1 | 28 |
4 | 9 | 0 | 32 |
1 | 12 | 2 | 37 |
0 | 13 | 0 | 39 |
1 | 15 | 1 | 40 |
2 | 19 | 1 | 44 |
1 | 20 | 0 | 46 |
1 | 22 | 1 | 49 |
0 | 24 | 0 | 50 |
Solution
- 1) The next figure shows the parameters estimated using RGA.
- 2) The figure below shows the calculation of the instantaneous reliability with the 2-sided 90% confidence bounds. From the QCP, it is estimated that the instantaneous reliability at stage 50 (or at the end of the test) is 72.70% with an upper and lower 2-sided 90% confidence bound of 82.36% and 39.59%, respectively.
- 3) The following plot shows the cumulative reliability with the 2-sided 90% confidence bounds.
- 4) The last figure shows the calculation of the expected number of failures after 75 trials. From the QCP, it is estimated that the cumulative number of failures after 75 trials is
. Since 20 failures occurred in the first 50 trials, the estimated number of additional failures is 7.