|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| =Hypothesis Tests=
| | #REDIRECT [[RGA_Appendix_B]] |
| {{common beta hypothesis test rsa}}
| |
| | |
| ==Laplace Trend Test==
| |
| <br>
| |
| The Laplace Trend Test tests the hypothesis that a trend does not exist within the data. The Laplace Trend test is applicable to the following data types: Multiple Systems-Concurrent Operating Times, Repairable and Fleet. The Laplace Trend Test can determine whether the system is deteriorating, improving, or if there is no trend at all. Calculate the test statistic, <math>U</math> , using the following equation:
| |
|
| |
| | |
| ::<math>U=\frac{\tfrac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{X}_{i}}}{N}-\tfrac{T}{2}}{T\sqrt{\tfrac{1}{12N}}}</math>
| |
| | |
| | |
| where:
| |
| <br>
| |
| :• <math>T</math> = total operating time (termination time)
| |
| :• <math>{{X}_{i}}</math> = age of the system at the <math>{{i}^{th}}</math> successive failure
| |
| :• <math>N</math> = total number of failures
| |
| <br>
| |
| The test statistic <math>U</math> is approximately a standard normal random variable. The critical value is read from the Standard Normal tables with a given significance level, <math>\alpha </math> .
| |
| <br>
| |
| <br>
| |
| '''Example'''
| |
| <br>
| |
| Consider once again the data in Table B.1. Check for a trend within System 1 assuming a significance level of 0.10. Calculate the test statistic <math>U</math> for System 1 using Eqn. (Utatistic).
| |
| | |
| | |
| ::<math>U=-2.6121</math>
| |
| | |
| | |
| From the Standard Normal tables with a significance level of 0.10, the critical value is equal to 1.645. If <math>-1.645<U<1.645</math> then we would fail to reject the hypothesis of no trend. However, since <math>U<-1.645</math> then an improving trend exists within System 1. <br>
| |
| If <math>U>1.645</math> then a deteriorating trend would exist.
| |
| | |
| <br>
| |
| | |
| ==Critical Values for Cramér-von Mises Test==
| |
| <br>
| |
| Table B.2 displays the critical values for the Cramér-von Mises goodness-of-fit test given the sample size, <math>M</math> , and the significance level, <math>\alpha </math> .
| |
| | |
| <br>
| |
| <br>
| |
| | |
| {|style= align="center" border="1"
| |
| |-
| |
| |colspan="6" style="text-align:center"|Table B.2 - Critical values for Cramér-von Mises test
| |
| |-
| |
| | ||colspan="5" style="text-align:center;"|<math>\alpha </math>
| |
| |-
| |
| |<math>M</math>|| 0.20|| 0.15|| 0.10|| 0.05|| 0.01
| |
| |-
| |
| |2|| 0.138|| 0.149|| 0.162|| 0.175|| 0.186
| |
| |-
| |
| |3|| 0.121|| 0.135|| 0.154|| 0.184||0.23
| |
| |-
| |
| |4|| 0.121|| 0.134|| 0.155|| 0.191||0.28
| |
| |-
| |
| |5|| 0.121|| 0.137|| 0.160|| 0.199||0.30
| |
| |-
| |
| |6|| 0.123|| 0.139|| 0.162|| 0.204||0.31
| |
| |-
| |
| |7|| 0.124|| 0.140|| 0.165|| 0.208||0.32
| |
| |-
| |
| |8|| 0.124|| 0.141|| 0.165|| 0.210||0.32
| |
| |-
| |
| |9|| 0.125|| 0.142|| 0.167|| 0.212||0.32
| |
| |-
| |
| |10|| 0.125|| 0.142|| 0.167|| 0.212||0.32
| |
| |-
| |
| |11|| 0.126|| 0.143|| 0.169|| 0.214||0.32
| |
| |-
| |
| |12|| 0.126|| 0.144|| 0.169|| 0.214||0.32
| |
| |-
| |
| |13|| 0.126|| 0.144|| 0.169|| 0.214||0.33
| |
| |-
| |
| |14|| 0.126|| 0.144|| 0.169|| 0.214||0.33
| |
| |-
| |
| |15|| 0.126|| 0.144|| 0.169|| 0.215||0.33
| |
| |-
| |
| |16|| 0.127|| 0.145|| 0.171|| 0.216|| 0.33
| |
| |-
| |
| |17|| 0.127|| 0.145|| 0.171|| 0.217|| 0.33
| |
| |-
| |
| |18|| 0.127|| 0.146|| 0.171|| 0.217|| 0.33
| |
| |-
| |
| |19|| 0.127|| 0.146|| 0.171|| 0.217|| 0.33
| |
| |-
| |
| |20|| 0.128|| 0.146|| 0.172|| 0.217|| 0.33
| |
| |-
| |
| |30|| 0.128|| 0.146|| 0.172|| 0.218|| 0.33
| |
| |-
| |
| |60|| 0.128|| 0.147|| 0.173|| 0.220|| 0.33
| |
| |-
| |
| |100|| 0.129|| 0.147|| 0.173|| 0.220|| 0.34
| |
| |}
| |
| | |
| For application of the Cramér-von Mises critical values, refer to Sections 5.5.1 and 10.1.6.1.
| |