Hypothesis Tests: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{template:RGA BOOK|AB|hypothesis Tests}} | {{template:RGA BOOK|AB|hypothesis Tests}} | ||
{{hypothesis tests | =Hypothesis Tests= | ||
==Common Beta Hypothesis Test== | |||
The Common Beta Hypothesis (CBH) Test is applicable to the following data types: Multiple Systems-Concurrent Operating Times, Repairable and Fleet. As shown by Crow [17], suppose that <math>K\,\!</math> number of systems are under test. Each system has an intensity function given by: | |||
::<math>{{u}_{q}}(t)={{\lambda }_{q}}{{\beta }_{q}}{{t}^{{{\beta }_{q}}-1}}</math> | |||
where <math>q=1,\ldots ,K\,\!</math> . You can compare the intensity functions of each of the systems by comparing the <math>{{\beta }_{q}}\,\!</math> of each system. When conducting an analysis of data consisting of multiple systems, you expect that each of the systems performed in a similar manner. In particular, you would expect the interarrival rate of the failures across the systems to be fairly consistent. Therefore, the CBH Test tests the hypothesis, <math>{{H}_{o}}\,\!</math> , such that <math>{{\beta }_{1}}={{\beta }_{2}}=\ldots ={{\beta }_{K}}\,\!</math> . Let <math>{{\tilde{\beta }}_{q}}\,\!</math> denote the conditional maximum likelihood estimate of <math>{{\beta }_{q}}\,\!</math> , which is given by: | |||
::<math>{{\tilde{\beta }}_{q}}=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{M}_{q}}}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\!</math> | |||
where: | |||
:*<math>K=1.\,\!</math> | |||
:*<math>{{M}_{q}}={{N}_{q}}\,\!</math> if data on the <math>{{q}^{th}}\,\!</math> system is time terminated or <math>{{M}_{q}}=({{N}_{q}}-1)\,\!</math> if data on the <math>{{q}^{th}}\,\!</math> system is failure terminated ( <math>{{N}_{q}}\,\!</math> is the number of failures on the <math>{{q}^{th}}\,\!</math> system). | |||
:*<math>{{X}_{iq}}\,\!</math> is the <math>{{i}^{th}}\,\!</math> time-to-failure on the <math>{{q}^{th}}\,\!</math> system. | |||
Then for each system, assume that: | |||
::<math>\chi _{q}^{2}=\frac{2{{M}_{q}}{{\beta }_{q}}}{{{{\tilde{\beta }}}_{q}}}</math> | |||
are conditionally distributed as independent Chi-Squared random variables with <math>2{{M}_{q}}\,\!</math> degrees of freedom. When <math>K=2\,\!</math> , you can test the null hypothesis, <math>{{H}_{o}}\,\!</math> , using the following statistic: | |||
::<math>F=\frac{\tfrac{\chi _{1}^{2}}{2{{M}_{1}}}}{\tfrac{\chi _{2}^{2}}{2{{M}_{2}}}}</math> | |||
If <math>{{H}_{o}}\,\!</math> is true, then <math>F\,\!</math> equals <math>\tfrac{{{{\tilde{\beta }}}_{2}}}{{{{\tilde{\beta }}}_{1}}}\,\!</math> and conditionally has an F-distribution with <math>(2{{M}_{1}},2{{M}_{2}})\,\!</math> degrees of freedom. The critical value, <math>F\,\!</math> , can then be determined by referring to the Chi-Squared tables. Now, if <math>K\ge 2\,\!</math> , then the likelihood ratio procedure [17] can be used to test the hypothesis <math>{{\beta }_{1}}={{\beta }_{2}}=\ldots ={{\beta }_{K}}\,\!</math> . Consider the following statistic: | |||
::<math>L=\underset{q=1}{\overset{K}{\mathop \sum }}\,{{M}_{q}}\ln ({{\tilde{\beta }}_{q}})-M\ln ({{\beta }^{*}})</math> | |||
where: | |||
:*<math>M=\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}\,\!</math> | |||
:*<math>{{\beta }^{*}}=\tfrac{M}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\tfrac{{{M}_{q}}}{{{{\tilde{\beta }}}_{q}}}}\,\!</math> | |||
Also, let: | |||
::<math>a=1+\frac{1}{6(K-1)}\left[ \underset{q=1}{\overset{K}{\mathop \sum }}\,\frac{1}{{{M}_{q}}}-\frac{1}{M} \right]</math> | |||
Calculate the statistic <math>D\,\!</math> , such that: | |||
::<math>D=\frac{2L}{a}</math> | |||
The statistic <math>D\,\!</math> is approximately distributed as a Chi-Squared random variable with <math>(K-1)\,\!</math> degrees of freedom. Then after calculating <math>D\,\!</math> , refer to the Chi-Squared tables with <math>(K-1)\,\!</math> degrees of freedom to determine the critical points. <math>{{H}_{o}}\,\!</math> is true if the statistic <math>D\,\!</math> falls between the critical points. | |||
'''Example''' | |||
Consider the data in Table B.1. | |||
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | |||
|- | |||
|colspan="4" style="text-align:center"|Table B.1 - Repairable system data | |||
|- | |||
| ||System 1||System 2||System 3 | |||
|- | |||
|Start||0||0||0 | |||
|- | |||
|End||2000||2000||2000 | |||
|- | |||
|Failures||1.2||1.4||0.3 | |||
|- | |||
| ||55.6 ||35 ||32.6 | |||
|- | |||
| ||72.7||46.8||33.4 | |||
|- | |||
| ||111.9||65.9||241.7 | |||
|- | |||
| ||121.9||181.1||396.2 | |||
|- | |||
| ||303.6||712.6||444.4 | |||
|- | |||
| ||326.9||1005.7||480.8 | |||
|- | |||
| ||1568.4||1029.9||588.9 | |||
|- | |||
| ||1913.5||1675.7||1043.9 | |||
|- | |||
| || ||1787.5||1136.1 | |||
|- | |||
| || ||1867||1288.1 | |||
|- | |||
| || || ||1408.1 | |||
|- | |||
| || || ||1439.4 | |||
|- | |||
| || || ||1604.8 | |||
|} | |||
Given that the intensity function for the <math>{{q}^{th}}\,\!</math> system is <math>{{u}_{q}}(t)={{\lambda }_{q}}{{\beta }_{q}}{{t}^{{{\beta }_{q}}-1}}\,\!</math> , test the hypothesis that <math>{{\beta }_{1}}={{\beta }_{2}}\,\!</math> while assuming a significance level equal to 0.05. Calculate <math>{{\tilde{\beta }}_{1}}\,\!</math> and <math>{{\tilde{\beta }}_{2}}\,\!</math> using Eqn. (CondBeta). Therefore: | |||
::<math>\begin{align} | |||
& {{{\tilde{\beta }}}_{1}}= & 0.3753 \\ | |||
& {{{\tilde{\beta }}}_{2}}= & 0.4657 | |||
\end{align}</math> | |||
Then <math>\tfrac{{{{\tilde{\beta }}}_{2}}}{{{{\tilde{\beta }}}_{1}}}=1.2408\,\!</math> . Using Eqn. (ftatistic) calculate the statistic <math>F\,\!</math> with a significance level of 0.05. | |||
::<math>\begin{align} | |||
F=2.0980 | |||
\end{align}</math> | |||
Since <math>1.2408<2.0980\,\!</math> we fail to reject the null hypothesis that <math>{{\beta }_{1}}={{\beta }_{2}}\,\!</math> at the 5% significance level. | |||
Now suppose instead it is desired to test the hypothesis that <math>{{\beta }_{1}}={{\beta }_{2}}={{\beta }_{3}}\,\!</math> . Calculate the statistic <math>D\,\!</math> using Eqn. (Dtatistic). | |||
::<math>\begin{align} | |||
D=0.5260 | |||
\end{align}</math> | |||
Using the Chi-Square tables with <math>K-1=2\,\!</math> degrees of freedom, the critical values at the 2.5 and 97.5 percentiles are 0.1026 and 5.9915, respectively. Since <math>0.1026<D<5.9915\,\!</math> , we fail to reject the null hypothesis that <math>{{\beta }_{1}}={{\beta }_{2}}={{\beta }_{3}}\,\!</math> at the 5% significance level. | |||
==Laplace Trend Test== | |||
The Laplace Trend Test tests the hypothesis that a trend does not exist within the data. The Laplace Trend test is applicable to the following data types: Multiple Systems-Concurrent Operating Times, Repairable and Fleet. The Laplace Trend Test can determine whether the system is deteriorating, improving, or if there is no trend at all. Calculate the test statistic, <math>U\,\!</math> , using the following equation: | |||
::<math>U=\frac{\tfrac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{X}_{i}}}{N}-\tfrac{T}{2}}{T\sqrt{\tfrac{1}{12N}}}</math> | |||
where: | |||
:*<math>T\,\!</math> = total operating time (termination time) | |||
:*<math>{{X}_{i}}\,\!</math> = age of the system at the <math>{{i}^{th}}\,\!</math> successive failure | |||
:*<math>N\,\!</math> = total number of failures | |||
<br> | |||
The test statistic <math>U\,\!</math> is approximately a standard normal random variable. The critical value is read from the Standard Normal tables with a given significance level, <math>\alpha \,\!</math> . | |||
'''Example''' | |||
Consider once again the data in Table B.1. Check for a trend within System 1 assuming a significance level of 0.10. Calculate the test statistic <math>U\,\!</math> for System 1 using Eqn. (Utatistic). | |||
::<math>\begin{align} | |||
U=-2.6121 | |||
\end{align}</math> | |||
From the Standard Normal tables with a significance level of 0.10, the critical value is equal to 1.645. If <math>-1.645<U<1.645\,\!</math> then we would fail to reject the hypothesis of no trend. However, since <math>U<-1.645\,\!</math> then an improving trend exists within System 1. | |||
If <math>U>1.645\,\!</math> then a deteriorating trend would exist. | |||
==Critical Values for Cramér-von Mises Test== | |||
Table B.2 displays the critical values for the Cramér-von Mises goodness-of-fit test given the sample size, <math>M\,\!</math> , and the significance level, <math>\alpha \,\!</math> . | |||
{|border="1" align="center" style="border-collapse: collapse;" cellpadding="5" cellspacing="5" | |||
|- | |||
|colspan="6" style="text-align:center"|Table B.2 - Critical values for Cramér-von Mises test | |||
|- | |||
| ||colspan="5" style="text-align:center;"|<math>\alpha \,\!</math> | |||
|- | |||
|<math>M</math>|| 0.20|| 0.15|| 0.10|| 0.05|| 0.01 | |||
|- | |||
|2|| 0.138|| 0.149|| 0.162|| 0.175|| 0.186 | |||
|- | |||
|3|| 0.121|| 0.135|| 0.154|| 0.184||0.23 | |||
|- | |||
|4|| 0.121|| 0.134|| 0.155|| 0.191||0.28 | |||
|- | |||
|5|| 0.121|| 0.137|| 0.160|| 0.199||0.30 | |||
|- | |||
|6|| 0.123|| 0.139|| 0.162|| 0.204||0.31 | |||
|- | |||
|7|| 0.124|| 0.140|| 0.165|| 0.208||0.32 | |||
|- | |||
|8|| 0.124|| 0.141|| 0.165|| 0.210||0.32 | |||
|- | |||
|9|| 0.125|| 0.142|| 0.167|| 0.212||0.32 | |||
|- | |||
|10|| 0.125|| 0.142|| 0.167|| 0.212||0.32 | |||
|- | |||
|11|| 0.126|| 0.143|| 0.169|| 0.214||0.32 | |||
|- | |||
|12|| 0.126|| 0.144|| 0.169|| 0.214||0.32 | |||
|- | |||
|13|| 0.126|| 0.144|| 0.169|| 0.214||0.33 | |||
|- | |||
|14|| 0.126|| 0.144|| 0.169|| 0.214||0.33 | |||
|- | |||
|15|| 0.126|| 0.144|| 0.169|| 0.215||0.33 | |||
|- | |||
|16|| 0.127|| 0.145|| 0.171|| 0.216|| 0.33 | |||
|- | |||
|17|| 0.127|| 0.145|| 0.171|| 0.217|| 0.33 | |||
|- | |||
|18|| 0.127|| 0.146|| 0.171|| 0.217|| 0.33 | |||
|- | |||
|19|| 0.127|| 0.146|| 0.171|| 0.217|| 0.33 | |||
|- | |||
|20|| 0.128|| 0.146|| 0.172|| 0.217|| 0.33 | |||
|- | |||
|30|| 0.128|| 0.146|| 0.172|| 0.218|| 0.33 | |||
|- | |||
|60|| 0.128|| 0.147|| 0.173|| 0.220|| 0.33 | |||
|- | |||
|100|| 0.129|| 0.147|| 0.173|| 0.220|| 0.34 | |||
|} | |||
For application of the Cramér-von Mises critical values, refer to Sections 5.5.1 and 10.1.6.1. |
Revision as of 23:00, 23 August 2012
Hypothesis Tests
Common Beta Hypothesis Test
The Common Beta Hypothesis (CBH) Test is applicable to the following data types: Multiple Systems-Concurrent Operating Times, Repairable and Fleet. As shown by Crow [17], suppose that [math]\displaystyle{ K\,\! }[/math] number of systems are under test. Each system has an intensity function given by:
- [math]\displaystyle{ {{u}_{q}}(t)={{\lambda }_{q}}{{\beta }_{q}}{{t}^{{{\beta }_{q}}-1}} }[/math]
where [math]\displaystyle{ q=1,\ldots ,K\,\! }[/math] . You can compare the intensity functions of each of the systems by comparing the [math]\displaystyle{ {{\beta }_{q}}\,\! }[/math] of each system. When conducting an analysis of data consisting of multiple systems, you expect that each of the systems performed in a similar manner. In particular, you would expect the interarrival rate of the failures across the systems to be fairly consistent. Therefore, the CBH Test tests the hypothesis, [math]\displaystyle{ {{H}_{o}}\,\! }[/math] , such that [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}=\ldots ={{\beta }_{K}}\,\! }[/math] . Let [math]\displaystyle{ {{\tilde{\beta }}_{q}}\,\! }[/math] denote the conditional maximum likelihood estimate of [math]\displaystyle{ {{\beta }_{q}}\,\! }[/math] , which is given by:
- [math]\displaystyle{ {{\tilde{\beta }}_{q}}=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{M}_{q}}}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\! }[/math]
where:
- [math]\displaystyle{ K=1.\,\! }[/math]
- [math]\displaystyle{ {{M}_{q}}={{N}_{q}}\,\! }[/math] if data on the [math]\displaystyle{ {{q}^{th}}\,\! }[/math] system is time terminated or [math]\displaystyle{ {{M}_{q}}=({{N}_{q}}-1)\,\! }[/math] if data on the [math]\displaystyle{ {{q}^{th}}\,\! }[/math] system is failure terminated ( [math]\displaystyle{ {{N}_{q}}\,\! }[/math] is the number of failures on the [math]\displaystyle{ {{q}^{th}}\,\! }[/math] system).
- [math]\displaystyle{ {{X}_{iq}}\,\! }[/math] is the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] time-to-failure on the [math]\displaystyle{ {{q}^{th}}\,\! }[/math] system.
Then for each system, assume that:
- [math]\displaystyle{ \chi _{q}^{2}=\frac{2{{M}_{q}}{{\beta }_{q}}}{{{{\tilde{\beta }}}_{q}}} }[/math]
are conditionally distributed as independent Chi-Squared random variables with [math]\displaystyle{ 2{{M}_{q}}\,\! }[/math] degrees of freedom. When [math]\displaystyle{ K=2\,\! }[/math] , you can test the null hypothesis, [math]\displaystyle{ {{H}_{o}}\,\! }[/math] , using the following statistic:
- [math]\displaystyle{ F=\frac{\tfrac{\chi _{1}^{2}}{2{{M}_{1}}}}{\tfrac{\chi _{2}^{2}}{2{{M}_{2}}}} }[/math]
If [math]\displaystyle{ {{H}_{o}}\,\! }[/math] is true, then [math]\displaystyle{ F\,\! }[/math] equals [math]\displaystyle{ \tfrac{{{{\tilde{\beta }}}_{2}}}{{{{\tilde{\beta }}}_{1}}}\,\! }[/math] and conditionally has an F-distribution with [math]\displaystyle{ (2{{M}_{1}},2{{M}_{2}})\,\! }[/math] degrees of freedom. The critical value, [math]\displaystyle{ F\,\! }[/math] , can then be determined by referring to the Chi-Squared tables. Now, if [math]\displaystyle{ K\ge 2\,\! }[/math] , then the likelihood ratio procedure [17] can be used to test the hypothesis [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}=\ldots ={{\beta }_{K}}\,\! }[/math] . Consider the following statistic:
- [math]\displaystyle{ L=\underset{q=1}{\overset{K}{\mathop \sum }}\,{{M}_{q}}\ln ({{\tilde{\beta }}_{q}})-M\ln ({{\beta }^{*}}) }[/math]
where:
- [math]\displaystyle{ M=\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}\,\! }[/math]
- [math]\displaystyle{ {{\beta }^{*}}=\tfrac{M}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\tfrac{{{M}_{q}}}{{{{\tilde{\beta }}}_{q}}}}\,\! }[/math]
Also, let:
- [math]\displaystyle{ a=1+\frac{1}{6(K-1)}\left[ \underset{q=1}{\overset{K}{\mathop \sum }}\,\frac{1}{{{M}_{q}}}-\frac{1}{M} \right] }[/math]
Calculate the statistic [math]\displaystyle{ D\,\! }[/math] , such that:
- [math]\displaystyle{ D=\frac{2L}{a} }[/math]
The statistic [math]\displaystyle{ D\,\! }[/math] is approximately distributed as a Chi-Squared random variable with [math]\displaystyle{ (K-1)\,\! }[/math] degrees of freedom. Then after calculating [math]\displaystyle{ D\,\! }[/math] , refer to the Chi-Squared tables with [math]\displaystyle{ (K-1)\,\! }[/math] degrees of freedom to determine the critical points. [math]\displaystyle{ {{H}_{o}}\,\! }[/math] is true if the statistic [math]\displaystyle{ D\,\! }[/math] falls between the critical points.
Example
Consider the data in Table B.1.
Table B.1 - Repairable system data | |||
System 1 | System 2 | System 3 | |
Start | 0 | 0 | 0 |
End | 2000 | 2000 | 2000 |
Failures | 1.2 | 1.4 | 0.3 |
55.6 | 35 | 32.6 | |
72.7 | 46.8 | 33.4 | |
111.9 | 65.9 | 241.7 | |
121.9 | 181.1 | 396.2 | |
303.6 | 712.6 | 444.4 | |
326.9 | 1005.7 | 480.8 | |
1568.4 | 1029.9 | 588.9 | |
1913.5 | 1675.7 | 1043.9 | |
1787.5 | 1136.1 | ||
1867 | 1288.1 | ||
1408.1 | |||
1439.4 | |||
1604.8 |
Given that the intensity function for the [math]\displaystyle{ {{q}^{th}}\,\! }[/math] system is [math]\displaystyle{ {{u}_{q}}(t)={{\lambda }_{q}}{{\beta }_{q}}{{t}^{{{\beta }_{q}}-1}}\,\! }[/math] , test the hypothesis that [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}\,\! }[/math] while assuming a significance level equal to 0.05. Calculate [math]\displaystyle{ {{\tilde{\beta }}_{1}}\,\! }[/math] and [math]\displaystyle{ {{\tilde{\beta }}_{2}}\,\! }[/math] using Eqn. (CondBeta). Therefore:
- [math]\displaystyle{ \begin{align} & {{{\tilde{\beta }}}_{1}}= & 0.3753 \\ & {{{\tilde{\beta }}}_{2}}= & 0.4657 \end{align} }[/math]
Then [math]\displaystyle{ \tfrac{{{{\tilde{\beta }}}_{2}}}{{{{\tilde{\beta }}}_{1}}}=1.2408\,\! }[/math] . Using Eqn. (ftatistic) calculate the statistic [math]\displaystyle{ F\,\! }[/math] with a significance level of 0.05.
- [math]\displaystyle{ \begin{align} F=2.0980 \end{align} }[/math]
Since [math]\displaystyle{ 1.2408\lt 2.0980\,\! }[/math] we fail to reject the null hypothesis that [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}\,\! }[/math] at the 5% significance level. Now suppose instead it is desired to test the hypothesis that [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}={{\beta }_{3}}\,\! }[/math] . Calculate the statistic [math]\displaystyle{ D\,\! }[/math] using Eqn. (Dtatistic).
- [math]\displaystyle{ \begin{align} D=0.5260 \end{align} }[/math]
Using the Chi-Square tables with [math]\displaystyle{ K-1=2\,\! }[/math] degrees of freedom, the critical values at the 2.5 and 97.5 percentiles are 0.1026 and 5.9915, respectively. Since [math]\displaystyle{ 0.1026\lt D\lt 5.9915\,\! }[/math] , we fail to reject the null hypothesis that [math]\displaystyle{ {{\beta }_{1}}={{\beta }_{2}}={{\beta }_{3}}\,\! }[/math] at the 5% significance level.
Laplace Trend Test
The Laplace Trend Test tests the hypothesis that a trend does not exist within the data. The Laplace Trend test is applicable to the following data types: Multiple Systems-Concurrent Operating Times, Repairable and Fleet. The Laplace Trend Test can determine whether the system is deteriorating, improving, or if there is no trend at all. Calculate the test statistic, [math]\displaystyle{ U\,\! }[/math] , using the following equation:
- [math]\displaystyle{ U=\frac{\tfrac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{X}_{i}}}{N}-\tfrac{T}{2}}{T\sqrt{\tfrac{1}{12N}}} }[/math]
where:
- [math]\displaystyle{ T\,\! }[/math] = total operating time (termination time)
- [math]\displaystyle{ {{X}_{i}}\,\! }[/math] = age of the system at the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] successive failure
- [math]\displaystyle{ N\,\! }[/math] = total number of failures
The test statistic [math]\displaystyle{ U\,\! }[/math] is approximately a standard normal random variable. The critical value is read from the Standard Normal tables with a given significance level, [math]\displaystyle{ \alpha \,\! }[/math] .
Example
Consider once again the data in Table B.1. Check for a trend within System 1 assuming a significance level of 0.10. Calculate the test statistic [math]\displaystyle{ U\,\! }[/math] for System 1 using Eqn. (Utatistic).
- [math]\displaystyle{ \begin{align} U=-2.6121 \end{align} }[/math]
From the Standard Normal tables with a significance level of 0.10, the critical value is equal to 1.645. If [math]\displaystyle{ -1.645\lt U\lt 1.645\,\! }[/math] then we would fail to reject the hypothesis of no trend. However, since [math]\displaystyle{ U\lt -1.645\,\! }[/math] then an improving trend exists within System 1.
If [math]\displaystyle{ U\gt 1.645\,\! }[/math] then a deteriorating trend would exist.
Critical Values for Cramér-von Mises Test
Table B.2 displays the critical values for the Cramér-von Mises goodness-of-fit test given the sample size, [math]\displaystyle{ M\,\! }[/math] , and the significance level, [math]\displaystyle{ \alpha \,\! }[/math] .
Table B.2 - Critical values for Cramér-von Mises test | |||||
[math]\displaystyle{ \alpha \,\! }[/math] | |||||
[math]\displaystyle{ M }[/math] | 0.20 | 0.15 | 0.10 | 0.05 | 0.01 |
2 | 0.138 | 0.149 | 0.162 | 0.175 | 0.186 |
3 | 0.121 | 0.135 | 0.154 | 0.184 | 0.23 |
4 | 0.121 | 0.134 | 0.155 | 0.191 | 0.28 |
5 | 0.121 | 0.137 | 0.160 | 0.199 | 0.30 |
6 | 0.123 | 0.139 | 0.162 | 0.204 | 0.31 |
7 | 0.124 | 0.140 | 0.165 | 0.208 | 0.32 |
8 | 0.124 | 0.141 | 0.165 | 0.210 | 0.32 |
9 | 0.125 | 0.142 | 0.167 | 0.212 | 0.32 |
10 | 0.125 | 0.142 | 0.167 | 0.212 | 0.32 |
11 | 0.126 | 0.143 | 0.169 | 0.214 | 0.32 |
12 | 0.126 | 0.144 | 0.169 | 0.214 | 0.32 |
13 | 0.126 | 0.144 | 0.169 | 0.214 | 0.33 |
14 | 0.126 | 0.144 | 0.169 | 0.214 | 0.33 |
15 | 0.126 | 0.144 | 0.169 | 0.215 | 0.33 |
16 | 0.127 | 0.145 | 0.171 | 0.216 | 0.33 |
17 | 0.127 | 0.145 | 0.171 | 0.217 | 0.33 |
18 | 0.127 | 0.146 | 0.171 | 0.217 | 0.33 |
19 | 0.127 | 0.146 | 0.171 | 0.217 | 0.33 |
20 | 0.128 | 0.146 | 0.172 | 0.217 | 0.33 |
30 | 0.128 | 0.146 | 0.172 | 0.218 | 0.33 |
60 | 0.128 | 0.147 | 0.173 | 0.220 | 0.33 |
100 | 0.129 | 0.147 | 0.173 | 0.220 | 0.34 |
For application of the Cramér-von Mises critical values, refer to Sections 5.5.1 and 10.1.6.1.