|
|
(10 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| = Expected Failure Time Plot =
| | #REDIRECT [[Reliability_Test_Design#Expected_Failure_Times_Plots]] |
| | |
| When a reliability life test is planned it is useful to visualize the expected outcome of the experiment. The Expected Failure Time Plot (introduced by ReliaSoft in Weibull++ 8)provides such a visual.
| |
| | |
| {| width="200" border="0" cellpadding="1" cellspacing="1" align="center"
| |
| |-
| |
| |
| |
| [[Image:EFTP1.png|border|center|700px|Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with b=2 and h-1,500 hrs and at a 90% confidence.]] | |
| | |
| '''Fig. 1:''' Expected Failure Time Plot with a sample size of 5, an assumed Weibull distribution with <math>\beta=2</math> and<math>\eta=2,000</math> hrs and at a 90% confidence.
| |
| | |
| |-
| |
| |
| |
| |}
| |
| | |
| <br>
| |
| | |
| <br>
| |
| | |
| <br>
| |
| | |
| == Background & Calculations ==
| |
| | |
| Using the cumulative binomial, for a defined sample size, one can compute a rank (Median Rank if at 50% probability) for each ordered failure. As an example and for a sample size of 6 the 5%, 50% and 95% ranks would be as follows:
| |
| | |
| <br>
| |
| | |
| {| border="1" cellspacing="1" cellpadding="1" width="400" align="center"
| |
| |+ '''Table 1: 5%, 50% and 95% Ranks for a sample size of 6. '''
| |
| |-
| |
| ! bgcolor="#cccccc" valign="middle" scope="col" align="center" | Order Number
| |
| ! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 5%
| |
| ! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 50%
| |
| ! bgcolor="#cccccc" valign="middle" scope="col" align="center" | 95%
| |
| |-
| |
| | valign="middle" align="center" | 1
| |
| | valign="middle" align="center" | 0.85%
| |
| | valign="middle" align="center" | 10.91%
| |
| | valign="middle" align="center" | 39.30%
| |
| |-
| |
| | valign="middle" align="center" | 2
| |
| | valign="middle" align="center" | 6.29%
| |
| | valign="middle" align="center" | 26.45%
| |
| | valign="middle" align="center" | 58.18%
| |
| |-
| |
| | valign="middle" align="center" | 3
| |
| | valign="middle" align="center" | 15.32%
| |
| | valign="middle" align="center" | 42.14%
| |
| | valign="middle" align="center" | 72.87%
| |
| |-
| |
| | valign="middle" align="center" | 4
| |
| | valign="middle" align="center" | 27.13%
| |
| | valign="middle" align="center" | 57.86%
| |
| | valign="middle" align="center" | 84.68%
| |
| |-
| |
| | valign="middle" align="center" | 5
| |
| | valign="middle" align="center" | 41.82%
| |
| | valign="middle" align="center" | 73.55%
| |
| | valign="middle" align="center" | 93.71%
| |
| |-
| |
| | valign="middle" align="center" | 6
| |
| | valign="middle" align="center" | 60.70%
| |
| | valign="middle" align="center" |
| |
| 89.09%
| |
| | |
| | valign="middle" align="center" |
| |
| 99.15%
| |
| | |
| |}
| |
| | |
| <br>
| |
| | |
| Furthermore, consider that for the units to be tested the underlying reliability model assumption is given by a Weibull distribution with <span class="texhtml">β = 2</span>, and <span class="texhtml">η = 100</span> hr. Then the median time to failure of the first unit on test can be determined by solving the Weibull reliability equation for t, at each probability,
| |
| | |
| or
| |
| | |
| R(t)=e^{\big({t \over \eta}\big)^\beta}
| |
| | |
| then for 0.85%,
| |
| | |
| <br>1-0.0085=e^{\big({t \over 100}\big)^2}
| |
| | |
| <br>
| |
| | |
| and so forths as shown in the table below:
| |
| | |
| <br>
| |
| | |
| {| border="1" cellspacing="1" cellpadding="1" width="400" align="center"
| |
| |+ '''Table 2: Times corresponding to the 5%, 50% and 95% Ranks for a sample size of 6. and assuming Weibull distribution with <span class="texhtml">β = 2</span>, and <span class="texhtml">η = 100</span> hr.'''
| |
| |-
| |
| ! bgcolor="#cccccc" scope="col" | Order Number
| |
| ! bgcolor="#cccccc" scope="col" | Lowest Expected Time-to-failure (hr)
| |
| ! bgcolor="#cccccc" scope="col" | Median Expected Time-to-failure (hr)
| |
| ! bgcolor="#cccccc" scope="col" | Highest Expected Time-to-failure (hr)
| |
| |-
| |
| | valign="middle" align="center" | 1
| |
| | valign="middle" align="center" | 9.25
| |
| | valign="middle" align="center" | 33.99
| |
| | valign="middle" align="center" | 70.66
| |
| |-
| |
| | valign="middle" align="center" | 2
| |
| | valign="middle" align="center" | 25.48
| |
| | valign="middle" align="center" | 55.42
| |
| | valign="middle" align="center" | 93.37
| |
| |-
| |
| | valign="middle" align="center" | 3
| |
| | valign="middle" align="center" | 40.77
| |
| | valign="middle" align="center" | 73.97
| |
| | valign="middle" align="center" | 114.21
| |
| |-
| |
| | valign="middle" align="center" | 4
| |
| | valign="middle" align="center" | 56.26
| |
| | valign="middle" align="center" | 92.96
| |
| | valign="middle" align="center" | 136.98
| |
| |-
| |
| | valign="middle" align="center" | 5
| |
| | valign="middle" align="center" | 73.60
| |
| | valign="middle" align="center" | 115.33
| |
| | valign="middle" align="center" | 166.34
| |
| |-
| |
| | valign="middle" align="center" | 6
| |
| | valign="middle" align="center" |
| |
| 96.64
| |
| | |
| | valign="middle" align="center" | 148.84
| |
| | valign="middle" align="center" | 218.32
| |
| |}
| |
| | |
| <br><br>
| |
| | |
| <br>
| |
| | |
| <br>
| |
| | |
| <br>
| |
| | |
| <br><br>
| |
| | |
| <a _fcknotitle="true" href="Category:Weibull++">Weibull++</a> <a _fcknotitle="true" href="Category:Test_Design">Test_Design</a> <a _fcknotitle="true" href="Category:Special_Tools">Special_Tools</a>
| |