|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ===Generalized Eyring-Weibull===
| | #REDIRECT [[Eyring_Relationship#Generalized_Eyring-Weibull]] |
| <br>
| |
| By setting <math>\eta =L(V,U)</math> from Eqn. (Gen-Eyr), the generalized Eyring Weibull model is given by:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & f(t,V,U)= & \beta \left( V{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right){{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta -1}} \\
| |
| & & .{{e}^{-{{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta }}}}
| |
| \end{align}</math>
| |
| | |
| | |
| ====Generalized Eyring-Weibull Reliability Function====
| |
| | |
| The generalized Eyring Weibull reliability function is given by:
| |
| | |
| | |
| <br>
| |
| ::<math>R(T,V,U)={{e}^{-{{\left( tV{{e}^{-A-\tfrac{B}{V}-CU-D\tfrac{U}{V}}} \right)}^{\beta }}}}</math>
| |
| | |
| | |
| {{gen-eyring weib rf}}
| |