|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ====The Mean====
| | #REDIRECT [[Eyring_Relationship#Eyring-Lognormal]] |
| <br>
| |
| • The mean life of the Eyring-lognormal model (mean of the times-to-failure), <math>\bar{T}</math> , is given by:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| \bar{T}=\ {{e}^{\bar{{T}'}+\tfrac{1}{2}\sigma _{{{T}'}}^{2}}} =\ {{e}^{-\ln (V)-A+\tfrac{B}{V}+\tfrac{1}{2}\sigma _{{{T}'}}^{2}}}
| |
| \end{align}</math>
| |
|
| |
|
| |
| <br>
| |
| The mean of the natural logarithms of the times-to-failure, <math>{{\bar{T}}^{^{\prime }}}</math> , in terms of <math>\bar{T}</math> and <math>{{\sigma }_{T}}</math> is given by:
| |
| <br>
| |
|
| |
| <br>
| |
| ::<math>{{\bar{T}}^{\prime }}=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma _{T}^{2}}{{{{\bar{T}}}^{2}}}+1 \right)</math>
| |
| <br>
| |