|
|
Line 1: |
Line 1: |
| ====Conditional Reliability Function====
| | #REDIRECT [[Eyring_Relationship#Eyring-Weibull]] |
| <br>
| |
| | |
| The Eyring-Weibull conditional reliability function at a specified stress level is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-{{\left( \left( T+t \right)\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}}{{{e}^{-{{\left( V\cdot T\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}}</math>
| |
| <br>
| |
| or:
| |
| | |
| <br>
| |
| ::<math>R(T,t,V)={{e}^{-\left[ {{\left( \left( T+t \right)\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}-{{\left( V\cdot T\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }} \right]}}</math>
| |
| | |
| <br>
| |