|
|
Line 1: |
Line 1: |
| ====Confidence Bounds on Time====
| | #REDIRECT [[Arrhenius_Relationship#Approximate_Confidence_Bounds_for_the_Arrhenius-Exponential]] |
| <br>
| |
| The bounds on time (ML estimate of time) for a given reliability are estimated by first solving the reliability function with respect to time:
| |
| | |
| <br>
| |
| ::<math>\widehat{T}=-\widehat{m}\cdot \ln (R)</math>
| |
| | |
| <br>
| |
| The corresponding confidence bounds are then estimated from:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & {{T}_{U}}= -{{m}_{U}}\cdot \ln (R) \\
| |
| & {{T}_{L}}= -{{m}_{L}}\cdot \ln (R)
| |
| \end{align}</math>
| |
| | |
| | |
| where <math>{{m}_{U}}</math> and <math>{{m}_{L}}</math> are estimated estimated by:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & {{m}_{U}}= \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\
| |
| & {{m}_{L}}= \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}}
| |
| \end{align}</math>
| |
| | |
| <br>
| |