|
|
(5 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ==Arrhenius-Lognormal==
| | #REDIRECT [[Arrhenius_Relationship#Arrhenius-Lognormal]] |
| <br>
| |
| The <math>pdf</math> of the lognormal distribution is given by:
| |
| <br>
| |
| <br>
| |
| ::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| | |
| <br>
| |
| where:
| |
| | |
| <br>
| |
| ::<math>{T}'=\ln(T) </math>
| |
| | |
| <br>
| |
| and:
| |
| <br>
| |
| • <math>T=</math> times-to-failure.
| |
| | |
| • <math>{T}'=</math> mean of the natural logarithms of the times-to-failure.
| |
| | |
| • <math>T=</math> times-to-failure.
| |
| | |
| • <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure.
| |
| <br>
| |
| <br>
| |
| The median of the lognormal distribution is given by:
| |
| | |
| <br>
| |
| ::<math>\breve{T}={{e}^{{{\overline{T}}^{\prime }}}}</math>
| |
| | |
| <br>
| |
| | |
| The Arrhenius-lognormal model <math>pdf</math> can be obtained first by setting <math>\breve{T}=L(V)</math> in Eqn. (arrhenius). Therefore:
| |
| | |
| ::<math>\breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
| |
| | |
| or:
| |
| | |
| ::<math>{{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}}</math>
| |
| | |
| Thus:
| |
| | |
| ::<math>{{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V}</math>
| |
| | |
| | |
| Substituting Eqn. (arrh-logn-mean) into Eqn. (arrh-logn-pdf) yields the Arrhenius-lognormal model <math>pdf</math> or:
| |
| | |
| ::<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| | |
| <br>
| |
| Note that in Eqn. (arrh-logn-pdf), it was assumed that the standard deviation of the natural logarithms of the times-to-failure, <math>{{\sigma }_{{{T}'}}},</math> is independent of stress. This assumption implies that the shape of the distribution does not change with stress ( <math>{{\sigma }_{{{T}'}}}</math> is the shape parameter of the lognormal distribution).
| |
| <br>
| |
| {{alta al stat prop sum}}
| |
| | |
| ===Parameter Estimation===
| |
| <br>
| |
| <br>
| |
| ====Maximum Likelihood Estimation Method====
| |
| <br>
| |
| The lognormal log-likelihood function for the Arrhenius-lognormal model is as follows:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{{{\sigma }_{{{T}'}}}{{T}_{i}}}\phi \left( \frac{\ln \left( {{T}_{i}} \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right) \right] \\
| |
| & & \text{ }+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ln \left[ 1-\Phi \left( \frac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right) \right] \\
| |
| & & +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })]
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| where:
| |
| | |
| <br>
| |
| ::<math>z_{Li}^{\prime \prime }=\frac{\ln T_{Li}^{\prime \prime }-\ln C-\tfrac{B}{{{V}_{i}}}}{\sigma _{T}^{\prime }}</math>
| |
| | |
| | |
| <br>
| |
| ::<math>z_{Ri}^{\prime \prime }=\frac{\ln T_{Ri}^{\prime \prime }-\ln C-\tfrac{B}{{{V}_{i}}}}{\sigma _{T}^{\prime }}</math>
| |
| | |
| <br>
| |
| and:
| |
| <br>
| |
| • <math>{{F}_{e}}</math> is the number of groups of exact times-to-failure data points.
| |
| | |
| • <math>{{N}_{i}}</math> is the number of times-to-failure data points in the <math>{{i}^{th}}</math> time-to-failure data group.
| |
| | |
| • .. is the standard deviation of the natural logarithm of the times-to-failure (unknown, the first of three parameters to be estimated).
| |
| | |
| • <math>B</math> is the Arrhenius parameter (unknown, the second of three parameters to be estimated).
| |
| | |
| • <math>C</math> is the second Arrhenius parameter (unknown, the third of three parameters to be estimated).
| |
| | |
| • <math>{{V}_{i}}</math> is the stress level of the <math>{{i}^{th}}</math> group.
| |
| | |
| • <math>{{T}_{i}}</math> is the exact failure time of the <math>{{i}^{th}}</math> group.
| |
| | |
| • <math>S</math> is the number of groups of suspension data points.
| |
| | |
| • <math>N_{i}^{\prime }</math> is the number of suspensions in the <math>{{i}^{th}}</math> group of suspension data points.
| |
| | |
| • <math>T_{i}^{\prime }</math> is the running time of the <math>{{i}^{th}}</math> suspension data group.
| |
| | |
| • <math>FI</math> is the number of interval data groups.
| |
| | |
| • <math>N_{i}^{\prime \prime }</math> is the number of intervals in the i <math>^{th}</math> group of data intervals.
| |
| | |
| • <math>T_{Li}^{\prime \prime }</math> is the beginning of the i <math>^{th}</math> interval.
| |
| | |
| • <math>T_{Ri}^{\prime \prime }</math> is the ending of the i <math>^{th}</math> interval.
| |
| | |
| The solution (parameter estimates) will be found by solving for <math>{{\widehat{\sigma }}_{{{T}'}}},</math> <math>\widehat{B},</math> <math>\widehat{C}</math> so that <math>\tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0,</math> <math>\tfrac{\partial \Lambda }{\partial B}=0</math> and <math>\tfrac{\partial \Lambda }{\partial C}=0</math> , where:
| |
| <br>
| |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial B}= & \frac{1}{\sigma _{{{T}'}}^{2}}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\frac{1}{{{V}_{i}}}(\ln ({{T}_{i}})-\ln (C)-\frac{B}{{{V}_{i}}}) \\
| |
| & & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{1}{{{V}_{i}}}\frac{\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)} \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\varphi (z_{Ri}^{\prime \prime })-\varphi (z_{Li}^{\prime \prime })}{\sigma _{T}^{\prime }{{V}_{i}}(\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime }))}
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial C}= & \frac{1}{C\cdot \sigma _{{{T}'}}^{2}}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}(\ln ({{T}_{i}})-\ln (C)-\frac{B}{{{V}_{i}}}) \\
| |
| & & +\frac{1}{C\cdot {{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)} \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\varphi (z_{Ri}^{\prime \prime })-\varphi (z_{Li}^{\prime \prime })}{\sigma _{T}^{\prime }C(\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime }))} \\
| |
| & & \\
| |
| & \frac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}= & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{{{\left( \ln ({{T}_{i}})-\ln (C)-\tfrac{B}{{{V}_{i}}} \right)}^{2}}}{\sigma _{{{T}'}}^{3}}-\frac{1}{{{\sigma }_{{{T}'}}}} \right) \\
| |
| & & +\frac{1}{{{\sigma }_{{{T}'}}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{\left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)\phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)}{1-\Phi \left( \tfrac{\ln \left( T_{i}^{\prime } \right)-\ln (C)-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right)} \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{z_{Ri}^{\prime \prime }\varphi (z_{Ri}^{\prime \prime })-z_{Li}^{\prime \prime }\varphi (z_{Li}^{\prime \prime })}{\sigma _{T}^{\prime }(\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime }))}
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| and:
| |
| | |
| <br>
| |
| ::<math>\phi \left( x \right)=\frac{1}{\sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( x \right)}^{2}}}}</math>
| |
| | |
| | |
| <br>
| |
| ::<math>\Phi (x)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{x}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt</math>
| |