|
|
(3 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ===Arrhenius-Weibull Statistical Properties Summary===
| | #REDIRECT [[Arrhenius_Relationship#Arrhenius-Weibull_Statistical_Properties_Summary]] |
| <br>
| |
| | |
| {{aaw mean}}
| |
| | |
| {{aaw median}}
| |
| | |
| {{aaw mode}}
| |
| | |
| {{aaw sd}}
| |
| | |
| {{aaw rf}}
| |
| | |
| {{aaw crf
| |
| | |
| ====Reliable Life====
| |
| <br>
| |
| | |
| For the Arrhenius-Weibull relationship, the reliable life, <math>{{t}_{R}}</math> , of a unit for a specified reliability and starting the mission at age zero is given by:
| |
| | |
| <br>
| |
| ::<math>{{t}_{R}}=C\cdot {{e}^{\tfrac{B}{V}}}{{\left\{ -\ln \left[ R\left( {{t}_{R}},V \right) \right] \right\}}^{\tfrac{1}{\beta }}}</math>
| |
| | |
| <br>
| |
| This is the life for which the unit will function successfully with a reliability of <math>R({{t}_{R}})</math> . If <math>R({{t}_{R}})=0.50</math> then <math>{\breve{T}</math>,
| |
| the median life, or the life by which half of the units will survive.
| |
| <br>
| |
| <br>
| |
| | |
| ====Arrhenius-Weibull Failure Rate Function====
| |
| <br>
| |
| The Arrhenius-Weibull failure rate function, <math>\lambda (T)</math> , is given by:
| |
| | |
| <br>
| |
| ::<math>\lambda \left( T,V \right)=\frac{f\left( T,V \right)}{R\left( T,V \right)}=\frac{\beta }{C\cdot {{e}^{\tfrac{B}{V}}}}{{\left( \frac{T}{C\cdot {{e}^{\tfrac{B}{V}}}} \right)}^{\beta -1}}</math>
| |
| <br>
| |
| [[Image:ALTA6.9.gif|thumb|center|300px|Failure rate function for <math>\Beta<1 </math>, <math>\Beta=1 </math>, and <math>\Beta>1 </math>.]]
| |
| <br>
| |