|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| ==Acceleration Factor==
| | #REDIRECT [[Arrhenius_Relationship]] |
| <br>
| |
| <br>
| |
| Most practitioners use the term acceleration factor to refer to the ratio of the life (or acceleration characteristic) between the use level and a higher test stress level or:
| |
| | |
| <br>
| |
| ::<math>{{A}_{F}}=\frac{{{L}_{USE}}}{{{L}_{Accelerated}}}</math>
| |
| | |
| <br>
| |
| For the Arrhenius model this factor is:
| |
| | |
| <br>
| |
| ::<math>{{A}_{F}}=\frac{{{L}_{USE}}}{{{L}_{Accelerated}}}=\frac{C\text{ }{{e}^{\tfrac{B}{{{V}_{u}}}}}}{C\text{ }{{e}^{\tfrac{B}{{{V}_{A}}}}}}=\frac{\text{ }{{e}^{\tfrac{B}{{{V}_{u}}}}}}{\text{ }{{e}^{\tfrac{B}{{{V}_{A}}}}}}={{e}^{\left( \tfrac{B}{{{V}_{u}}}-\tfrac{B}{{{V}_{A}}} \right)}}</math>
| |
| | |
| | |
| <br>
| |
| Thus, if <math>B</math> is assumed to be known a priori (using an activation energy), the assumed activation energy alone dictates this acceleration factor!
| |
| <br>
| |