|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ===Confidence Limits for the MCF===
| | #REDIRECT [[Non-Parametric Recurrent Event Data Analysis]] |
| Upper and lower conifidence limits for <math>M({{t}_{i}})</math> are:
| |
| | |
| ::<math>\begin{align}
| |
| & {{M}_{U}}({{t}_{i}})= {{M}^{*}}({{t}_{i}}).{{e}^{\tfrac{{{K}_{\alpha }}.\sqrt{Var[{{M}^{*}}({{t}_{i}})]}}{{{M}^{*}}({{t}_{i}})}}} \\
| |
| & {{M}_{L}}({{t}_{i}})= \frac{{{M}^{*}}({{t}_{i}})}{{{e}^{\tfrac{{{K}_{\alpha }}.\sqrt{Var[{{M}^{*}}({{t}_{i}})]}}{{{M}^{*}}({{t}_{i}})}}}}
| |
| \end{align}</math>
| |
| | |
| where <math>\alpha </math> ( <math>50%<\alpha <100%</math> ) is confidence level, <math>{{K}_{\alpha }}</math> is the <math>\alpha </math> standard normal percentile and <math>Var[{{M}^{*}}({{t}_{i}})]</math> is the variance of the MCF estimate at recurrence age <math>{{t}_{i}}</math> . The variance is calculated as follows:
| |
| | |
| ::<math>Var[{{M}^{*}}({{t}_{i}})]=Var[{{M}^{*}}({{t}_{i-1}})]+\frac{1}{r_{i}^{2}}\left[ \underset{j\in {{R}_{i}}}{\overset{}{\mathop \sum }}\,{{\left( {{d}_{ji}}-\frac{1}{{{r}_{i}}} \right)}^{2}} \right]</math>
| |
| | |
| where <math>r</math> is defined in Eqn.(R), <math>{{R}_{i}}</math> is the set of the units that have not been suspended by <math>i</math> and <math>{{d}_{ji}}</math> is defined as follows:
| |
| | |
| ::<math>\begin{align}
| |
| & {{d}_{ji}}= 1\text{ if the }{{j}^{\text{th }}}\text{unit had an event recurrence at age }{{t}_{i}} \\
| |
| & {{d}_{ji}}= 0\text{ if the }{{j}^{\text{th }}}\text{unit did not have an event reoccur at age }{{t}_{i}}
| |
| \end{align}</math>
| |
| | |
| | |
| '''Example 2:'''
| |
| {{Example: Recurrent Events Data Non-parameteric MCF Bound Example}}
| |
| | |
| | |
| '''Example 3:'''
| |
| {{Example: Recurrent Events Data Non-parameteric Transmission Example}}
| |