|
|
(4 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ===Arrhenius-Exponential Statistical Properties Summary===
| | #REDIRECT [[Arrhenius_Relationship#Arrhenius-Exponential]] |
| <br>
| |
| {{aae mean}}
| |
| {{aae median}}
| |
| | |
| {{aae mode}}
| |
| | |
| ====Standard Deviation====
| |
| The standard deviation, <math>{{\sigma }_{T}}</math> , of the Arrhenius-exponential model is given by:
| |
| | |
| <br>
| |
| ::<math>{{\sigma }_{T}}=C{{e}^{\tfrac{B}{V}}}</math>
| |
| | |
| ====Arrhenius-Exponential Reliability Function====
| |
| <br>
| |
| | |
| The Arrhenius-exponential reliability function is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,V)={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}</math>
| |
| | |
| <br>
| |
| This function is the complement of the Arrhenius-exponential cumulative distribution function or:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT</math>
| |
| | |
| <br>
| |
| and:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-\mathop{}_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}</math>
| |
| | |
| <br>
| |
| | |
| ====Conditional Reliability====
| |
| The Arrhenius-exponential conditional reliability function is given by,
| |
| | |
| ::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-\lambda (T+t)}}}{{{e}^{-\lambda T}}}={{e}^{-\tfrac{t}{C{{e}^{\tfrac{B}{V}}}}}}</math>
| |
| | |
| ====Reliable Life====
| |
| <br>
| |
| For the Arrhenius-exponential model, the reliable life, or the mission duration for a desired reliability goal, <math>{{t}_{R}},</math> is given by:
| |
| | |
| <br>
| |
| ::<math>R({{t}_{R}},V)={{e}^{-\tfrac{{{t}_{R}}}{C{{e}^{\tfrac{B}{V}}}}}}</math>
| |
| | |
| | |
| | |
| <br>
| |
| ::<math>\ln [R({{t}_{R}},V)]=-\frac{{{t}_{R}}}{C{{e}^{\tfrac{B}{V}}}}</math>
| |
| | |
| <br>
| |
| or:
| |
| | |
| <br>
| |
| ::<math>{{t}_{R}}=-C{{e}^{\tfrac{B}{V}}}\ln [R({{t}_{R}},V)]</math>
| |