|
|
(3 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ==Arrhenius-Exponential==
| | #REDIRECT [[Arrhenius_Relationship#Arrhenius-Exponential]] |
| <br>
| |
| The <math>pdf</math> of the 1-parameter exponential distribution is given by:
| |
| | |
| <br>
| |
| ::<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
| |
| | |
| <br>
| |
| It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
| |
| | |
| | |
| <br>
| |
| ::<math>\lambda =\frac{1}{m}</math>
| |
| | |
| <br>
| |
| thus:
| |
| | |
| | |
| <br>
| |
| ::<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
| |
| | |
|
| |
| <br>
| |
| The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius).
| |
| <br>
| |
| Therefore:
| |
| | |
| <br>
| |
| ::<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
| |
| | |
| <br>
| |
| Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or:
| |
| | |
| | |
| <br>
| |
| ::<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
| |
| | |
| {{aae stat prop sum}}
| |
| | |
| ===Parameter Estimation===
| |
| | |
| {{aae mle}}
| |