|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ==Arrhenius-Exponential==
| | #REDIRECT [[Arrhenius_Relationship#Arrhenius-Exponential]] |
| <br>
| |
| The <math>pdf</math> of the 1-parameter exponential distribution is given by:
| |
| | |
| <br>
| |
| ::<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
| |
| | |
| <br>
| |
| It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
| |
| | |
| | |
| <br>
| |
| ::<math>\lambda =\frac{1}{m}</math>
| |
| | |
| <br>
| |
| thus:
| |
| | |
| | |
| <br>
| |
| ::<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
| |
| | |
|
| |
| <br>
| |
| The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius).
| |
| <br>
| |
| Therefore:
| |
| | |
| <br>
| |
| ::<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
| |
| | |
| <br>
| |
| Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or:
| |
| | |
| | |
| <br>
| |
| ::<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
| |
| | |
| {{aae stat prop sum}}
| |
| | |
| ===Parameter Estimation===
| |
| | |
| ====Maximum Likelihood Estimation Method====
| |
| <br>
| |
| The log-likelihood function for the exponential distribution is as shown next:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \lambda {{e}^{-\lambda {{T}_{i}}}} \right]-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\lambda T_{i}^{\prime } \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{+\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })]
| |
| \end{align}</math>
| |
| <br>
| |
| where:
| |
| | |
| <br>
| |
| ::<math>R_{Li}^{\prime \prime }={{e}^{-\lambda T_{Li}^{\prime \prime }}}</math>
| |
| | |
| | |
| <br>
| |
| ::<math>R_{Ri}^{\prime \prime }={{e}^{-\lambda T_{Ri}^{\prime \prime }}}</math>
| |
| | |
| <br>
| |
| and:
| |
| <br>
| |
| • <math>{{F}_{e}}</math> is the number of groups of exact times-to-failure data points.
| |
| | |
| • <math>{{N}_{i}}</math> is the number of times-to-failure in the <math>{{i}^{th}}</math> time-to-failure data group.
| |
| | |
| • <math>\lambda </math> is the failure rate parameter (unknown).
| |
| | |
| • <math>{{T}_{i}}</math> is the exact failure time of the <math>{{i}^{th}}</math> group.
| |
| | |
| • <math>S</math> is the number of groups of suspension data points.
| |
| | |
| • <math>N_{i}^{\prime }</math> is the number of suspensions in the <math>{{i}^{th}}</math> group of suspension data points.
| |
| | |
| • <math>T_{i}^{\prime }</math> is the time of the <math>{{i}^{th}}</math> suspension data group.
| |
| | |
| • <math>FI</math> is the number of interval data groups.
| |
| | |
| • <math>N_{i}^{\prime \prime }</math> is the number of intervals in the i <math>^{th}</math> group of data intervals.
| |
| | |
| • <math>T_{Li}^{\prime \prime }</math> is the beginning of the i <math>^{th}</math> interval.
| |
| | |
| • <math>T_{Ri}^{\prime \prime }</math> is the ending of the i <math>^{th}</math> interval.
| |
| <br>
| |
| Substituting the Arrhenius-exponential model into the log-likelihood function yields:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \Lambda = & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}}{{e}^{-\tfrac{1}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}}{{T}_{i}}}} \right] \\
| |
| & & -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{1}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}}T_{i}^{\prime }+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }]
| |
| \end{align}</math>
| |
| | |
| | |
| <br>
| |
| where:
| |
| | |
| <br>
| |
| ::<math>R_{Li}^{\prime \prime }={{e}^{-\tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}}}}</math>
| |
| | |
| <br>
| |
| ::<math>R_{Ri}^{\prime \prime }={{e}^{-\tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}}}}</math>
| |
| | |
| | |
| <br>
| |
| The solution (parameter estimates) will be found by solving for the parameters <math>\widehat{B},</math> <math>\widehat{C}</math> so that <math>\tfrac{\partial \Lambda }{\partial B}=0</math> and <math>\tfrac{\partial \Lambda }{\partial C}=0</math> , where:
| |
| | |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial B}= & \frac{1}{C}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{{{T}_{i}}}{{{V}_{i}}{{e}^{\tfrac{B}{{{V}_{i}}}}}}-\frac{C}{{{V}_{i}}} \right)+\frac{1}{C}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{T_{i}^{\prime }}{{{V}_{i}}{{e}^{\tfrac{B}{{{V}_{i}}}}}} \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{+\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{T_{Li}^{\prime \prime }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime }R_{Ri}^{\prime \prime }}{(R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime })C{{V}_{i}}{{e}^{\tfrac{B}{{{V}_{i}}}}}}
| |
| \end{align}</math>
| |
| | |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial C}= & \frac{1}{C}\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{{{T}_{i}}}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}}-1 \right)+\frac{1}{{{C}^{2}}}\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\frac{T_{i}^{\prime }}{{{e}^{\tfrac{B}{{{V}_{i}}}}}} \\
| |
| & & \overset{FI}{\mathop{\underset{i=1}{\mathop{+\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{T_{Li}^{\prime \prime }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime }R_{Ri}^{\prime \prime }}{(R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }){{C}^{2}}{{e}^{\tfrac{B}{{{V}_{i}}}}}}
| |
| \end{align}</math>
| |
| | |
| <br>
| |