|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ==IPL-Exponential==
| | #REDIRECT [[Inverse_Power_Law_(IPL)_Relationship#IPL-Exponential]] |
| <br>
| |
| The IPL-exponential model can be derived by setting <math>m=L(V)</math> in the exponential <math>pdf</math>, yielding the following IPL-exponential <math>pdf</math> :
| |
| | |
| <br>
| |
| ::<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
| |
| | |
| <br>
| |
| Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply <math>\lambda =K{{V}^{n}},</math> and is only a function of stress.
| |
| <br>
| |
| [[Image:ALTA8.4.png|center|500px|IPL-exponential failure rate function at different stress levels.]]
| |
| <br>
| |
| | |
| <br>
| |
| {{ipl ex stat prop sum}}
| |
| | |
| {{ipl ex rel function}}
| |
| | |
| ===Parameter Estimation===
| |
| <br>
| |
| {{ipl ex mle}}
| |