|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| ====GLL Lognormal====
| | #REDIRECT [[Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards]] |
| <br>
| |
| The GLL-lognormal model can be derived by setting <math>\breve{T}=L(\underline{X})</math>
| |
| in the lognormal <math>pdf</math>, yielding the following GLL-lognormal <math>pdf</math> :
| |
| | |
| <br>
| |
| <math>f(t,\underline{X})=\frac{1}{t\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-{{\alpha }_{0}}-\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
| |
| | |
| <br>
| |
| The total number of unknowns to solve for in this model is <math>n+2</math> (i.e. <math>{{\sigma }_{{{T}'}}},{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>
| |
| <br>
| |