|
|
Line 1: |
Line 1: |
| ===GLL Exponential===
| | #REDIRECT [[Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards]] |
| <br>
| |
| The GLL-exponential model can be derived by setting <math>m=L(\underline{X})</math> in the exponential <math>pdf</math>, yielding the following GLL-exponential <math>pdf</math> :
| |
| | |
| <br>
| |
| <math>f(t,\underline{X})={{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)\cdot t}}</math>
| |
| | |
| <br>
| |
| The total number of unknowns to solve for in this model is <math>n+1</math> (i.e. <math>{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>
| |
| <br>
| |