|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| ==T-NT Weibull==
| | #REDIRECT [[Temperature-NonThermal_Relationship#T-NT_Weibull]] |
| <br>
| |
| By setting <math>\eta =L(U,V)</math>, the T-NT Weibull model is given by:
| |
| | |
| <br>
| |
| ::<math>f(t,U,V)=\frac{\beta {{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C}{{\left( \frac{t\cdot {{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t\cdot {{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }}}}</math>
| |
| | |
| <br>
| |
| ===T-NT Weibull Statistical Properties Summary===
| |
| <br>
| |
| ====Mean or MTTF====
| |
| <br>
| |
| The mean, <math>\overline{T}</math> , for the T-NT Weibull model is given by:
| |
| <br>
| |
| ::<math>\overline{T}=\frac{C}{{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math>
| |
| | |
| <br>
| |
| where <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math> is the gamma function evaluated at the value of <math>\left( \tfrac{1}{\beta }+1 \right)</math> .
| |
| | |
| ====Median====
| |
| <br>
| |
| The median, <math>\breve{T},</math>
| |
| for the T-NT Weibull model is given by:
| |
| | |
| <br>
| |
| ::<math>\breve{T}=\frac{C}{{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{{\left( \ln 2 \right)}^{\tfrac{1}{\beta }}}</math>
| |
| <br>
| |
| | |
| ====Mode====
| |
| <br>
| |
| The mode, <math>\tilde{T},</math> for the T-NT Weibull model is given by:
| |
| | |
| <br>
| |
| ::<math>\tilde{T}=\frac{C}{{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{{\left( 1-\frac{1}{\beta } \right)}^{\tfrac{1}{\beta }}}</math>
| |
| | |
| <br>
| |
| | |
| ====Standard Deviation====
| |
| <br>
| |
| The standard deviation, <math>{{\sigma }_{T}},</math> for the T-NT Weibull model is given by:
| |
| | |
| <br>
| |
| ::<math>{{\sigma }_{T}}=\frac{C}{{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}\cdot \sqrt{\Gamma \left( \frac{2}{\beta }+1 \right)-{{\left( \Gamma \left( \frac{1}{\beta }+1 \right) \right)}^{2}}}</math>
| |
| <br>
| |
| <br>
| |
| ====T-NT Weibull Reliability Function====
| |
| <br>
| |
| The T-NT Weibull reliability function is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,U,V)={{e}^{-{{\left( \tfrac{T{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }}}}</math>
| |
| | |
| <br>
| |
| ====Conditional Reliability Function====
| |
| <br>
| |
| The T-NT Weibull conditional reliability function at a specified stress level is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,t,U,V)=\frac{R(T+t,U,V)}{R(T,U,V)}=\frac{{{e}^{-{{\left( \tfrac{\left( T+t \right){{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }}}}}</math>
| |
| | |
| <br>
| |
| :or:
| |
| <br>
| |
| ::<math>R(T,t,U,V)={{e}^{-\left[ {{\left( \tfrac{\left( T+t \right){{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }}-{{\left( \tfrac{T{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta }} \right]}}</math>
| |
| | |
| <br>
| |
| | |
| ====Reliable Life====
| |
| <br>
| |
| For the T-NT Weibull model, the reliable life, <math>{{T}_{R}}</math> , of a unit for a specified reliability and starting the mission at age zero is given by:
| |
| | |
| <br>
| |
| ::<math>{{T}_{R}}=\frac{C}{{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{{\left\{ -\ln \left[ R\left( {{T}_{R}},U,V \right) \right] \right\}}^{\tfrac{1}{\beta }}}</math>
| |
| | |
| <br>
| |
| ====T-NT Weibull Failure Rate Function====
| |
| <br>
| |
| The T-NT Weibull failure rate function, <math>\lambda (T)</math> , is given by:
| |
| | |
| <br>
| |
| ::<math>\lambda \left( T,U,V \right)=\frac{f\left( T,U,V \right)}{R\left( T,U,V \right)}=\frac{\beta {{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C}{{\left( \frac{T{{U}^{n}}{{e}^{-\tfrac{B}{V}}}}{C} \right)}^{\beta -1}}</math>
| |
| | |
| ===Parameter Estimation===
| |
| <br>
| |
| ====Maximum Likelihood Estimation Method====
| |
| <br>
| |
| Substituting the T-NT relationship into the Weibull log-likelihood function yields:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{\beta U_{i}^{n}{{e}^{-\tfrac{B}{{{V}_{i}}}}}}{C}{{\left( \frac{U_{i}^{n}{{e}^{-\tfrac{B}{{{V}_{i}}}}}}{C}{{T}_{i}} \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{U_{i}^{n}{{e}^{-\tfrac{B}{{{V}_{i}}}}}}{C}{{T}_{i}} \right)}^{\beta }}}} \right] -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( \frac{U_{i}^{n}{{e}^{-\tfrac{B}{{{V}_{i}}}}}}{C}T_{i}^{\prime } \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }]
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| where:
| |
| <br>
| |
| <br>
| |
| ::<math>R_{Li}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{C}U_{i}^{\prime \prime n}{{e}^{-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}}}</math>
| |
| <br>
| |
| <br>
| |
| ::<math>R_{Ri}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{C}U_{i}^{\prime \prime n}{{e}^{-\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}}}</math>
| |
| | |
| <br>
| |
| and:
| |
| <br>
| |
| • <math>{{F}_{e}}</math> is the number of groups of exact times-to-failure data points.
| |
| <br>
| |
| • <math>{{N}_{i}}</math> is the number of times-to-failure data points in the <math>{{i}^{th}}</math> time-to-failure data group.
| |
| <br>
| |
| • <math>\beta </math> is the Weibull shape parameter (unknown, the first of four parameters to be estimated).
| |
| <br>
| |
| • <math>B</math> is the first T-NT parameter (unknown, the second of four parameters to be estimated).
| |
| <br>
| |
| • <math>C</math> is the second T-NT parameter (unknown, the third of four parameters to be estimated).
| |
| <br>
| |
| • <math>n</math> is the third T-NT parameter (unknown, the fourth of four parameters to be estimated).
| |
| <br>
| |
| • <math>{{V}_{i}}</math> is the temperature level of the <math>{{i}^{th}}</math> group.
| |
| <br>
| |
| • <math>{{U}_{i}}</math> is the non-thermal stress level of the <math>{{i}^{th}}</math> group.
| |
| <br>
| |
| • <math>{{T}_{i}}</math> is the exact failure time of the <math>{{i}^{th}}</math> group.
| |
| <br>
| |
| • <math>S</math> is the number of groups of suspension data points.
| |
| <br>
| |
| • <math>N_{i}^{\prime }</math> is the number of suspensions in the <math>{{i}^{th}}</math> group of suspension data points.
| |
| <br>
| |
| • <math>T_{i}^{\prime }</math> is the running time of the <math>{{i}^{th}}</math> suspension data group.
| |
| <br>
| |
| • <math>FI</math> is the number of interval data groups.
| |
| <br>
| |
| • <math>N_{i}^{\prime \prime }</math> is the number of intervals in the <math>{{i}^{th}}</math> group of data intervals.
| |
| <br>
| |
| • <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>{{i}^{th}}</math> interval.
| |
| <br>
| |
| • <math>T_{Ri}^{\prime \prime }</math> is the ending of the <math>{{i}^{th}}</math> interval.
| |
| <br>
| |
| <br>
| |
| The solution (parameter estimates) will be found by solving for the parameters <math>B,</math> <math>C,</math> <math>n</math> and <math>\beta </math> so that <math>\tfrac{\partial \Lambda }{\partial B}=0,</math> <math>\tfrac{\partial \Lambda }{\partial C}=0,</math> <math>\tfrac{\partial \Lambda }{\partial n}=0</math> and <math>\tfrac{\partial \Lambda }{\partial \beta }=0</math> .
| |
| <br>
| |