| 
				     | 
				
| (One intermediate revision by one other user not shown) | 
| Line 1: | 
Line 1: | 
 | ==T-H Weibull==
  |  | #REDIRECT [[Temperature-Humidity_Relationship#T-H_Weibull]]  | 
 | <br>
  |  | 
 | By setting  <math>\eta =L(U,V)</math>  in the Weibull <math>pdf</math>, the T--H Weibull model's  <math>pdf</math>  is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>f(t,\,V,\,U)=\frac{\beta }{A}{{e}^{-\left( \tfrac{\varphi }{V}+\tfrac{b}{U} \right)}}{{\left( \frac{t}{A}{{e}^{-\left( \tfrac{\varphi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{A}{{e}^{-\left( \tfrac{\varphi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ===T-H Weibull Statistical Properties Summary===
  |  | 
 | <br>
  |  | 
 | ====Mean or MTTF====
  |  | 
 | <br>
  |  | 
 | The mean,  <math>\overline{T}</math>  (also called  <math>MTTF</math> ), of the T-H Weibull model is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\overline{T}=A{{e}^{\tfrac{\phi }{V}+\tfrac{b}{U}}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where  <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math>  is the gamma function evaluated at the value of  <math>\left( \tfrac{1}{\beta }+1 \right)</math> .
  |  | 
 | <br>
  |  | 
 | ====Median====
  |  | 
 | <br>
  |  | 
 | The median, <math>\breve{T},</math> of the T-H Weibull model is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\breve{T}=A{{e}^{\tfrac{\phi }{V}+\tfrac{b}{U}}}{{\left( \ln 2 \right)}^{\tfrac{1}{\beta }}}</math>
  |  | 
 |    |  | 
 | ====Mode====
  |  | 
 | <br>
  |  | 
 | The mode,  <math>\tilde{T},</math>  of the T-H Weibull model is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\tilde{T}=A{{e}^{\tfrac{\phi }{V}+\tfrac{b}{U}}}{{\left( 1-\frac{1}{\beta } \right)}^{\tfrac{1}{\beta }}}</math>
  |  | 
 | <br>
  |  | 
 |    |  | 
 | ====Standard Deviation====
  |  | 
 | <br>
  |  | 
 | The standard deviation,  <math>{{\sigma }_{T}},</math>  of the T-H Weibull model is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{\sigma }_{T}}=A{{e}^{\tfrac{\phi }{V}+\tfrac{b}{U}}}\cdot \sqrt{\Gamma \left( \frac{2}{\beta }+1 \right)-{{\left( \Gamma \left( \frac{1}{\beta }+1 \right) \right)}^{2}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ====T-H Weibull Reliability Function====
  |  | 
 | <br>
  |  | 
 | The T-H Weibull reliability function is given by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R(T,V,U)={{e}^{-{{\left( \tfrac{T}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 |    |  | 
 | ====Conditional Reliability Function====
  |  | 
 | <br>
  |  | 
 | The T-H Weibull conditional reliability function at a specified stress level is given by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R(T,t,V,U)=\frac{R(T+t,V,U)}{R(T,V,U)}=\frac{{{e}^{-{{\left( \tfrac{T+t}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }}}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | or:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R(T,t,V,U)={{e}^{-\left[ {{\left( \tfrac{T+t}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }}-{{\left( \tfrac{T}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta }} \right]}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ====Reliable Life====
  |  | 
 | <br>
  |  | 
 | For the T-H Weibull model, the reliable life,  <math>{{t}_{R}}</math> , of a unit for a specified reliability and starting the mission at age zero is given by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{t}_{R}}=A{{e}^{\tfrac{\phi }{V}+\tfrac{b}{U}}}{{\left\{ -\ln \left[ R\left( {{T}_{R}},V,U \right) \right] \right\}}^{\tfrac{1}{\beta }}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ====T-H Weibull Failure Rate Function====
  |  | 
 | <br>
  |  | 
 | The T-H Weibull failure rate function,  <math>\lambda (T,V,U)</math> , is given by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\lambda \left( T,V,U \right)=\frac{f\left( T,V,U \right)}{R\left( T,V,U \right)}=\frac{\beta }{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}}{{\left( \frac{T}{A}{{e}^{-\left( \tfrac{\phi }{V}+\tfrac{b}{U} \right)}} \right)}^{\beta -1}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ===Parameter Estimation===
  |  | 
 | <br>
  |  | 
 | ====Maximum Likelihood Estimation Method====
  |  | 
 | <br>
  |  | 
 | Substituting the T-H model into the Weibull log-likelihood function yields:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{\beta }{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{{{U}_{i}}} \right)}}{{\left( \frac{{{T}_{i}}}{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{{{U}_{i}}} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{{{T}_{i}}}{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{{{U}_{i}}} \right)}} \right)}^{\beta }}}} \right] \\ 
  |  | 
 |  &  & -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{{{U}_{i}}} \right)}} \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }]  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R_{Li}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{U_{i}^{\prime \prime }} \right)}} \right)}^{\beta }}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R_{Ri}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{A}{{e}^{-\left( \tfrac{\phi }{{{V}_{i}}}+\tfrac{b}{U_{i}^{\prime \prime }} \right)}} \right)}^{\beta }}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | and:
  |  | 
 | <br>
  |  | 
 | •	 <math>{{F}_{e}}</math>  is the number of groups of exact times-to-failure data points.
  |  | 
 | <br>
  |  | 
 | •	 <math>{{N}_{i}}</math>  is the number of times-to-failure data points in the  <math>{{i}^{th}}</math>  time-to-failure data group.
  |  | 
 | <br>
  |  | 
 | •	 <math>\beta </math>  is the Weibull shape parameter (unknown, the first of four parameters to be estimated).
  |  | 
 | <br>
  |  | 
 | •	 ..  is the T-H parameter (unknown, the second of four parameters to be estimated).
  |  | 
 | <br>
  |  | 
 | •	 <math>\phi </math>  is the second T-H parameter (unknown, the third of four parameters to be estimated).
  |  | 
 | <br>
  |  | 
 | •	 <math>b</math>  is the third T-H parameter (unknown, the fourth of four parameters to be estimated).
  |  | 
 | <br>
  |  | 
 | •	 <math>{{V}_{i}}</math>  is the temperature level of the  <math>{{i}^{th}}</math>  group.
  |  | 
 | <br>
  |  | 
 | •	 <math>{{U}_{i}}</math>  is the relative humidity level of the  <math>{{i}^{th}}</math>  group.
  |  | 
 | <br>
  |  | 
 | •	 <math>{{T}_{i}}</math>  is the exact failure time of the  <math>{{i}^{th}}</math>  group.
  |  | 
 | <br>
  |  | 
 | •	 <math>S</math>  is the number of groups of suspension data points.
  |  | 
 | <br>
  |  | 
 | •	 <math>N_{i}^{\prime }</math>  is the number of suspensions in the  <math>{{i}^{th}}</math>  group of suspension data points.
  |  | 
 | <br>
  |  | 
 | •	 <math>T_{i}^{\prime }</math>  is the running time of the  <math>{{i}^{th}}</math>  suspension data group.
  |  | 
 | <br>
  |  | 
 | •	 <math>FI</math>  is the number of interval data groups.
  |  | 
 | <br>
  |  | 
 | •	 <math>N_{i}^{\prime \prime }</math>  is the number of intervals in the  <math>{{i}^{th}}</math>  group of data intervals.
  |  | 
 | <br>
  |  | 
 | •	 <math>T_{Li}^{\prime \prime }</math>  is the beginning of the   interval.
  |  | 
 | <br>
  |  | 
 | •	 <math>T_{Ri}^{\prime \prime }</math>  is the ending of the  <math>{{i}^{th}}</math>  interval.
  |  | 
 | <br>
  |  | 
 | The solution (parameter estimates) will be found by solving for the parameters  <math>A,</math>   <math>\phi ,</math>   <math>b</math>  and  <math>\beta </math>  so that  <math>\tfrac{\partial \Lambda }{\partial \beta }=0,</math>   <math>\tfrac{\partial \Lambda }{\partial A}=0,</math>   <math>\tfrac{\partial \Lambda }{\partial \phi }=0</math>  and  <math>\tfrac{\partial \Lambda }{\partial b}=0</math> .
  |  | 
 | <br>
  |  | 
 | <br>
  |  | 
 |    |  | 
 | {{Example:T-H}}
  |  |