|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| | | #REDIRECT [[Lognormal Distribution Examples]] |
| ==General Examples==
| |
| | |
| '''Example 9:'''
| |
| {{Example: Lognormal General Example Interval Data}}
| |
| | |
| '''Example 10:'''
| |
| {{Example: Lognormal General Example Complete Data}}
| |
| | |
| | |
| | |
| ===Example 11===
| |
| From Kececioglu [19, p. 406]. Nine identical units are tested continuously to failure and their times-to-failure were recorded at 30.4, 36.7, 53.3, 58.5, 74.0, 99.3, 114.3, 140.1, and 257.9 hours.
| |
| ====Solution to Example 11====
| |
| The results published were obtained by using the unbiased model.
| |
| Published Results (using MLE):
| |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=4.3553 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.67677 \\
| |
| \end{matrix}</math>
| |
| | |
| | |
| This same data set can be entered into Weibull++ by creating a data sheet capable of handling non-grouped time-to-failure data. Since the results shown above are unbiased, the Use Unbiased Std on Normal Data option in the User Setup must be selected in order to duplicate these results.
| |
| Weibull++ computed parameters for maximum likelihood are:
| |
| | |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=4.3553 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.6768 \\
| |
| \end{matrix}</math>
| |
| | |
| ===Example 12===
| |
| From Kececioglu [20, p. 347]. Fifteen identical units were tested to failure and following is a table of their times-to-failure:
| |
| | |
| | |
| <center><math>\text{Table 9}\text{.5 - Data of Example 11}</math></center>
| |
| | |
| <center><math>\begin{matrix}
| |
| \text{Data Point Index} & \text{Time-to-Failure, hr} \\
| |
| \text{1} & \text{62}\text{.5} \\
| |
| \text{2} & \text{91}\text{.9} \\
| |
| \text{3} & \text{100}\text{.3} \\
| |
| \text{4} & \text{117}\text{.4} \\
| |
| \text{5} & \text{141}\text{.1} \\
| |
| \text{6} & \text{146}\text{.8} \\
| |
| \text{7} & \text{172}\text{.7} \\
| |
| \text{8} & \text{192}\text{.5} \\
| |
| \text{9} & \text{201}\text{.6} \\
| |
| \text{10} & \text{235}\text{.8} \\
| |
| \text{11} & \text{249}\text{.2} \\
| |
| \text{12} & \text{297}\text{.5} \\
| |
| \text{13} & \text{318}\text{.3} \\
| |
| \text{14} & \text{410}\text{.6} \\
| |
| \text{15} & \text{550}\text{.5} \\
| |
| \end{matrix}</math></center>
| |
| | |
| | |
| ====Solution to Example 12====
| |
| Published results (using probability plotting):
| |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=5.22575 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.62048. \\
| |
| \end{matrix}</math>
| |
| | |
| | |
| Weibull++ computed parameters for rank regression on X are:
| |
| | |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=5.2303 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.6283. \\
| |
| \end{matrix}</math>
| |
| | |
| | |
| The small differences are due to the precision errors when fitting a line manually, whereas in Weibull++ the line was fitted mathematically.
| |
| | |
| ===Example 13===
| |
| From Nelson [30, p. 324]. Ninety-six locomotive controls were tested, 37 failed and 59 were suspended after running for 135,000 miles. Table 9.6 (at the end of this chapter) shows their times-to-failure.
| |
| ====Solution to Example 13====
| |
| The distribution used in the publication was the base-10 lognormal.
| |
| Published results (using MLE):
| |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=2.2223 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.3064 \\
| |
| \end{matrix}</math>
| |
| | |
| | |
| Published 95% confidence limits on the parameters:
| |
| | |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=\left\{ 2.1336,2.3109 \right\} \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=\left\{ 0.2365,0.3970 \right\} \\
| |
| \end{matrix}</math>
| |
| | |
| | |
| Published variance/covariance matrix:
| |
| | |
| | |
| ::<math>\left[ \begin{matrix}
| |
| \widehat{Var}\left( {{{\hat{\mu }}}^{\prime }} \right)=0.0020 & {} & \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma }}}_{{{T}'}}})=0.001 \\
| |
| {} & {} & {} \\
| |
| \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma }}}_{{{T}'}}})=0.001 & {} & \widehat{Var}\left( {{{\hat{\sigma }}}_{{{T}'}}} \right)=0.0016 \\
| |
| \end{matrix} \right]</math>
| |
| | |
| To replicate the published results (since Weibull++ uses a lognormal to the base <math>e</math> ), take the base-10 logarithm of the data and estimate the parameters using the Normal distribution and MLE.
| |
| | |
| • Weibull++ computed parameters for maximum likelihood are:
| |
| | |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=2.2223 \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=0.3064 \\
| |
| \end{matrix}</math>
| |
| | |
| • Weibull++ computed 95% confidence limits on the parameters:
| |
| | |
| | |
| ::<math>\begin{matrix}
| |
| {{\widehat{\mu }}^{\prime }}=\left\{ 2.1364,2.3081 \right\} \\
| |
| {{\widehat{\sigma }}_{{{T}'}}}=\left\{ 0.2395,0.3920 \right\} \\
| |
| \end{matrix}</math>
| |
| | |
|
| |
| | |
| • Weibull++ computed/variance covariance matrix:
| |
| | |
| | |
| ::<math>\left[ \begin{matrix}
| |
| \widehat{Var}\left( {{{\hat{\mu }}}^{\prime }} \right)=0.0019 & {} & \widehat{Cov}({{{\hat{\mu }}}^{\prime }},{{{\hat{\sigma }}}_{{{T}'}}})=0.0009 \\
| |
| {} & {} & {} \\
| |
| \widehat{Cov}({\mu }',{{{\hat{\sigma }}}_{{{T}'}}})=0.0009 & {} & \widehat{Var}\left( {{{\hat{\sigma }}}_{{{T}'}}} \right)=0.0015 \\
| |
| \end{matrix} \right]</math>
| |
| | |
| | |
| | |
| {|align="center" border="1" cellspacing="1"
| |
| |-
| |
| |colspan="4" style="text-align:center"|Table 9.6 - Nelson's Locomotive Data
| |
| |-
| |
| !
| |
| !Number in State
| |
| !F or S
| |
| !Time
| |
| |-
| |
| |1||1||F||22.5
| |
| |-
| |
| |2||1||F||37.5
| |
| |-
| |
| |3||1||F||46
| |
| |-
| |
| |4||1||F||48.5
| |
| |-
| |
| |5||1||F||51.5
| |
| |-
| |
| |6||1||F||53
| |
| |-
| |
| |7||1||F||54.5
| |
| |-
| |
| |8||1||F||57.5
| |
| |-
| |
| |9||1||F||66.5
| |
| |-
| |
| |10||1||F||68
| |
| |-
| |
| |11||1||F||69.5
| |
| |-
| |
| |12||1||F||76.5
| |
| |-
| |
| |13||1||F||77
| |
| |-
| |
| |14||1||F||78.5
| |
| |-
| |
| |15||1||F||80
| |
| |-
| |
| |16||1||F||81.5
| |
| |-
| |
| |17||1||F||82
| |
| |-
| |
| |18||1||F||83
| |
| |-
| |
| |19||1||F||84
| |
| |-
| |
| |20||1||F||91.5
| |
| |-
| |
| |21||1||F||93.5
| |
| |-
| |
| |22||1||F||102.5
| |
| |-
| |
| |23||1||F||107
| |
| |-
| |
| |24||1||F||108.5
| |
| |-
| |
| |25||1||F||112.5
| |
| |-
| |
| |26||1||F||113.5
| |
| |-
| |
| |27||1||F||116
| |
| |-
| |
| |28||1||F||117
| |
| |-
| |
| |29||1||F||118.5
| |
| |-
| |
| |30||1||F||119
| |
| |-
| |
| |31||1||F||120
| |
| |-
| |
| |32||1||F||122.5
| |
| |-
| |
| |33||1||F||123
| |
| |-
| |
| |34||1||F||127.5
| |
| |-
| |
| |35||1||F||131
| |
| |-
| |
| |36||1||F||132.5
| |
| |-
| |
| |37||1||F||134
| |
| |-
| |
| |38||59||S||135
| |
| |}
| |