|
|
Line 1: |
Line 1: |
| === The Mean or MTTF ===
| | #REDIRECT [[Weibull Distribution Functions]] |
| | |
| The mean, <math> \overline{T} \,\!</math>, (also called ''MTTF'' of the Weibull ''pdf'' is given by:
| |
| | |
| ::<math> \overline{T}=\gamma +\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>
| |
| | |
| where
| |
| ::<math> \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>
| |
| | |
| is the gamma function evaluated at the value of
| |
| | |
| ::<math> \left( { \frac{1}{\beta }}+1\right) \,\!</math>.
| |
| | |
| The gamma function is defined as:
| |
| | |
| ::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math>
| |
| | |
| For the 2-parameter case, this can be reduced to:
| |
| | |
| ::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>
| |
| | |
| Note that some practitioners erroneously assume that <math> \eta \,\!</math> is equal to the MTTF, <math> \overline{T}\,\!</math>.
| |
| This is only true for the case of
| |
| <math> \beta=1 \,\!</math> or
| |
| | |
| ::<math>
| |
| \begin{align}
| |
| \overline{T} &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\
| |
| &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\
| |
| &= \eta \cdot \Gamma \left( {2}\right) \\
| |
| &= \eta \cdot 1\\
| |
| &= \eta
| |
| \end{align}
| |
| </math>
| |