|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| '''Likelihood Ratio Bound on <math>\lambda </math>'''
| | #REDIRECT [[The Exponential Distribution]] |
| | |
| Five units are put on a reliability test and experience failures at 20, 40, 60, 100, and 150 hours. Assuming an exponential distribution, the MLE parameter estimate is calculated to be <math>\hat{\lambda }=0.013514.</math> Calculate the 85% two-sided confidence bounds on these parameters using the likelihood ratio method.
| |
|
| |
| | |
| '''Solution'''
| |
| | |
| The first step is to calculate the likelihood function for the parameter estimates: | |
| | |
| ::<math>\begin{align}
| |
| L(\hat{\lambda })= & \underset{i=1}{\overset{N}{\mathop \prod }}\,f({{x}_{i}};\hat{\lambda })=\underset{i=1}{\overset{N}{\mathop \prod }}\,\hat{\lambda }\cdot {{e}^{-\hat{\lambda }\cdot {{x}_{i}}}} \\
| |
| L(\hat{\lambda })= & \underset{i=1}{\overset{5}{\mathop \prod }}\,0.013514\cdot {{e}^{-0.013514\cdot {{x}_{i}}}} \\
| |
| L(\hat{\lambda })= & 3.03647\times {{10}^{-12}}
| |
| \end{align}</math>
| |
| | |
| where <math>{{x}_{i}}</math> are the original time-to-failure data points. We can now rearrange the likelihood ratio equation to the form:
| |
| | |
| ::<math>L(\lambda )-L(\hat{\lambda })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}=0</math>
| |
| | |
| Since our specified confidence level, <math>\delta </math>, is 85%, we can calculate the value of the chi-squared statistic, <math>\chi _{0.85;1}^{2}=2.072251.</math> We can now substitute this information into the equation:
| |
| | |
| ::<math>\begin{align}
| |
| L(\lambda )-L(\hat{\lambda })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}= & 0, \\
| |
| L(\lambda )-3.03647\times {{10}^{-12}}\cdot {{e}^{\tfrac{-2.072251}{2}}}= & 0, \\
| |
| L(\lambda )-1.07742\times {{10}^{-12}}= & 0.
| |
| \end{align}</math>
| |
| | |
| It now remains to find the values of <math>\lambda </math> which satisfy this equation. Since there is only one parameter, there are only two values of <math>\lambda </math> that will satisfy the equation. These values represent the <math>\delta =85%</math> two-sided confidence limits of the parameter estimate <math>\hat{\lambda }</math>. For our problem, the confidence limits are:
| |
| | |
| ::<math>{{\lambda }_{0.85}}=(0.006572,0.024172)</math>
| |